Физические свойства угарного газа: плотность, теплоемкость, теплопроводность CO. Угарный газ: формула и свойства

Признаки того, что угарный газ (оксид углерода(II), окись углерода, монооксид углерода) образовался в воздухе в опасной концентрации, определить сложно – невидимый, может не пахнуть, скапливается в помещении постепенно, незаметно. Для жизни человека чрезвычайно опасен: имеет высокую токсичность, излишнее содержание в легких приводит к тяжелым отравлениям и смертельным исходам. Ежегодно фиксируется высокий уровень смертности от отравления газом. Снизить угрозу отравления можно соблюдением простых правил и использованием специальных датчиков угарного вещества.

Что такое угарный газ

Природный газ образуется при горении любой биомассы, в промышленности является продуктом горения любых соединений на основе углерода. И в том, и в другом случае обязательным условием выделения газа является недостаток кислорода. Большие объемы его поступают в атмосферу в результате лесных пожаров, в виде выхлопных газов, образующихся при сгорании топлива в двигателях автомобилей. В промышленных целях используется при производстве органического спирта, сахара, обработке мяса животных и рыбы. Небольшое количество монооксида вырабатывают и клетки организма человека.

Свойства

С точки зрения химии monoxide – неорганическое соединение с единственным атомом кислорода в молекуле, химическая формула – СО. Это химическое вещество, которое не имеет характерного цвета, вкуса и запаха, оно легче воздуха, но тяжелее водорода, при комнатных температурах неактивно. Человек, ощущающий запах, чувствует лишь присутствие находящихся в воздухе органических примесей. Относится к разряду токсичных продуктов, смерть при концентрации в воздухе 0,1% наступает в течение одного часа. Характеристика предельно допустимой концентрации равна 20 мг/куб.м.

Действие угарного газа на организм человека

Для человека монооксид углерода представляет смертельную опасность. Его токсическое действие объясняется образованием в клетках крови карбоксигемоглобина – продукта присоединения оксида углерода(II) к гемоглобину крови. Высокий уровень содержания карбоксигемоглобина вызывает кислородное голодание, недостаточное поступление кислорода к головному мозгу и другим тканям организма. При слабой интоксикации содержание его в крови низкое, разрушение естественным путем возможно в течение 4-6 часов. При высоких концентрациях действуют только медицинские препараты.

Отравление угарным газом

Окись углерода – одно из самых опасных веществ. При отравлении происходит интоксикация организма, сопровождающаяся ухудшением общего состояния человека. Очень важно вовремя распознать признаки отравления угарным газом. Результат лечения зависит от уровня вещества в организме и от того, как скоро подоспела помощь. В этом деле счет идет на минуты – пострадавший может или вылечиться окончательно, или остаться больным навсегда (все зависит от скорости реагирования спасателей).

Симптомы

В зависимости от степени отравления могут наблюдаться головные боли, головокружения, шум в ушах, учащенное сердцебиение, тошнота, одышка, мерцание в глазах, общая слабость. Часто наблюдается сонливость, что особенно опасно, когда человек находится в загазованном помещении. При попадании в органы дыхания большого количества ядовитых веществ наблюдаются судороги, потеря сознания, в особо тяжелых случаях – кома.

Первая помощь при отравлении угарным газом

Пострадавшему на месте должна быть оказана доврачебная помощь при отравлении угарным газом. Надо незамедлительно переместить его на свежий воздух и вызвать врача. Следует помнить и о своей безопасности: заходить в помещение с источником этого вещества надо только глубоко вдохнув, внутри не дышать. Пока не приехал врач надо облегчить доступ кислорода к легким: расстегнуть пуговицы, снять или ослабить одежду. Если потерпевший потерял сознание и перестал дышать, необходима искусственная вентиляция легких.

Антидот при отравлении

Специальное противоядие (антидот) при отравлении окисью углерода – это медикаментозный препарат, который активно препятствует образованию карбоксигемоглобина. Действие антидота приводит к снижению потребности организма в кислороде, поддержке органов, чувствительных к недостатку кислорода: головного мозга, печени и др. Вводится внутримышечно дозировкой 1 мл сразу после извлечения больного из зоны с высокой концентрацией ядовитых веществ. Повторно можно вводить антидот не ранее чем через час после первого введения. Допускается его использование для профилактики.

Лечение

В случае легкого воздействия окисью углерода лечение проводится амбулаторно, в тяжелых случаях больной госпитализируется. Уже в карете скорой помощи ему дается кислородная подушка или маска. В тяжелых случаях, чтобы дать организму большую дозу кислорода, пациента помещают в барокамеру. Внутримышечно вводится антидот. Уровень газа в крови постоянно контролируется. Дальнейшая реабилитация медикаментозная, действия врачей направлены на восстановление работы головного мозга, сердечно-сосудистой системы, легких.

Последствия

Воздействие угарным углеродом на организм может стать причиной серьезных заболеваний: изменяются работоспособность мозга, поведение, сознание человека, появляются необъяснимые головные боли. Особенно влиянию вредных веществ подвержена память – та часть головного мозга, которая отвечает за переход кратковременной памяти в долговременную. Последствия отравления угарным газом больной может почувствовать только спустя несколько недель. Большинство пострадавших полностью восстанавливаются после периода реабилитации, но некоторые ощущают последствия всю жизнь.

Как определить угарный газ в помещении

Отравиться окисью углерода легко в домашних условиях, и это случается не только во время пожара. Концентрация угарного углерода образуется при неаккуратном обращении с заслонкой печи, при эксплуатации неисправной газовой колонки или вентиляции. Источником угарного вещества может быть газовая плита. Если в помещении стоит дым – это уже повод бить тревогу. Для постоянного контроля за уровнем газа существуют специальные датчики. Они контролируют уровень концентрации газа и сообщают о превышении нормы. Наличие такого прибора снижает риск отравления.

Видео

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.

В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ , удельная теплоемкость при постоянном давлении C p , коэффициенты теплопроводности λ и динамической вязкости μ .

В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.

Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С.

Плотность угарного газа, как и , существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м 3 , но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м 3 .

При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м 3 . Если же сравнить его плотность с или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче и аргона, но тяжелее азота, водорода, гелия и других легких газов.

Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).

Плотность угарного газа CO и его удельная теплоемкость
t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град) t, °С ρ, кг/м 3 C p , Дж/(кг·град)
-73 1,689 1045 157 0,783 1053 1227 0,224 1258
-53 1,534 1044 200 0,723 1058 1327 0,21 1267
-33 1,406 1043 257 0,635 1071 1427 0,198 1275
-13 1,297 1043 300 0,596 1080 1527 0,187 1283
-3 1,249 1043 357 0,535 1095 1627 0,177 1289
0 1,25 1040 400 0,508 1106 1727 0,168 1295
7 1,204 1042 457 0,461 1122 1827 0,16 1299
17 1,162 1043 500 0,442 1132 1927 0,153 1304
27 1,123 1043 577 0,396 1152 2027 0,147 1308
37 1,087 1043 627 0,374 1164 2127 0,14 1312
47 1,053 1043 677 0,354 1175 2227 0,134 1315
57 1,021 1044 727 0,337 1185 2327 0,129 1319
67 0,991 1044 827 0,306 1204 2427 0,125 1322
77 0,952 1045 927 0,281 1221 2527 0,12 1324
87 0,936 1045 1027 0,259 1235 2627 0,116 1327
100 0,916 1045 1127 0,241 1247 2727 0,112 1329

Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у .

Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10 -7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у . Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO 2 , однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.

Физические свойства.

Монооксид углерода представляет собой бесцветный и не имеющий запаха газ, малорастворимый в воде.

  • t пл. 205 °С,
  • t кип. 191 °С
  • критическая температура =140°С
  • критическое давление = 35 атм.
  • растворимость СО в воде около 1:40 по объёму.

Химические свойства.

При обычных условиях CO инертен; при нагревании - восстановитель; несолеобразующий оксид.

1) с кислородом

2C +2 O + O 2 = 2C +4 O 2

2) с оксидами металлов

C +2 O + CuO = Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 --hn-> COCl 2 (фосген)

4) реагирует с расплавами щелочей (под давлением)

CO + NaOH = HCOONa (муравьинокислый натрий (формиат натрия))

5) с переходными металлами образует карбонилы

Ni + 4CO =t°= Ni(CO) 4

Fe + 5CO =t°= Fe(CO) 5

Монооксид углерода химически не взаимодействует с водой. Не реагирует СО также со щелочами и кислотами. Он чрезвычайно ядовит.

С химической стороны монооксид углерода характеризуется главным образом склонностью к реакциям присоединения и своими восстановительными свойствами. Однако обе эти тенденции обычно проявляются лишь при повышенных температурах. В этих условиях СО соединяется с кислородом, хлором, серой, некоторыми металлами и т. д. Вместе с тем оксид углерода при нагревании восстанавливает до металлов многие оксиды, что весьма важно для металлургии.

Наряду с нагреванием повышение химической активности СО часто вызывается его растворением. Так, в растворе он способен восстанавливать соли Au, Pt и некоторых других элементов до свободных металлов уже при обычных температурах.

При повышенных температурах и высоких давлениях имеет место взаимодействие СО с водой и едкими щелочами: в первом случае образуется НСООН, а во втором - муравьинокислый натрий. Последняя реакция протекает при 120 °С, давлении 5 атм и находит техническое использование.

Легко идущее в растворе восстановление хлористого палладия по суммарной схеме:

PdCl 2 + H 2 O + CO = CO 2 + 2 HCl + Pd

служит наиболее часто применяемой реакцией открытия монооксида углерода в смеси газов. Уже очень небольшие количества СО легко обнаруживаются по лёгкому окрашиванию раствора вследствие выделения мелко раздробленного металлического палладия. Количественное определение СО основывается на реакции:

5 СО + I 2 O 5 = 5 CO 2 + I 2 .

Окисление СО в растворе часто идёт с заметной скоростью лишь в присутствии катализатора. При подборе последнего основную роль играет природа окислителя. Так, KMnO 4 быстрее всего окисляет СО в присутствии мелкораздробленного серебра, K 2 Cr 2 O 7 - в присутствии солей ртути, КСlO 3 - в присутствии OsO 4 . В общем, по своим восстановительным свойствам СО похож на молекулярный водород, причём активность его при обычных условиях выше, чем у последнего. Интересно, что существуют бактерии, способные за счёт окисления СО получать необходимую им для жизни энергию.

Сравнительную активность СО и Н 2 как восстановителей можно оценить путём изучения обратимой реакции:

равновесное состояние которой при высоких температурах устанавливается довольно быстро (особенно в присутствии Fe 2 O 3). При 830 °С в равновесной смеси находятся равные количества СО и Н 2 , т. е. сродство обоих газов к кислороду одинаково. Ниже 830 °С более сильным восстановителем является СО, выше - Н 2 .

Связывание одного из продуктов рассмотренной выше реакции в соответствии с законом действия масс смещает её равновесие. Поэтому, пропуская смесь монооксида углерода и водяного пара над оксидом кальция, можно получить водород по схеме:

Н 2 О + СО + СаО = СаСО 3 + Н 2 + 217 кДж.

Реакция эта идёт уже при 500 °С.

На воздухе СО загорается около 700 °С и сгорает синим пламенем до СО 2:

2 СО + О 2 = 2 СО 2 + 564 кДж.

Сопровождающее эту реакцию значительное выделение тепла делает монооксид углерода ценным газообразным топливом. Однако наиболее широкое применение он находит как исходный продукт для синтеза различных органических веществ.

Сгорание толстых слоёв угля в печах идёт в три стадии:

1) С + О 2 = СО 2 ;

2) СО 2 + С = 2 СО;

3) 2 СО + О 2 = 2 СО 2 .

При преждевременном закрытии трубы в печи создаётся недостаток кислорода, что может вызвать распространение СО по отапливаемому помещению и привести к отравлениям (угар). Следует отметить, что запах "угарного газа" обусловлен не СО, а примесями некоторых органических веществ.

Пламя СО может иметь температуру до 2100 °С. Реакция горения СО интересна тем, что при нагревании до 700-1000 °С она идёт с заметной скоростью только в присутствии следов водяного пара или других содержащих водород газов (NH 3 , H 2 S и т. п.). Обусловлено это цепным характером рассматриваемой реакции, протекающей при посредстве промежуточного образования радикалов ОН по схемам:

Н + О 2 = НО + О, затем О + СО = СО 2 , НО + СО = СО 2 + Н и т. д.

При очень высоких температурах реакция горения СО становится заметно обратимой. Содержание СО 2 в равновесной смеси (под давлением 1 атм) выше 4000 °С может быть лишь ничтожно малым. Сама молекула СО настолько термически устойчива, что не разлагается даже при 6000 °С. Молекулы СО были обнаружены в межзвёздной среде.

При действии СО на металлический К при 80 °С образуется бесцветное кристаллическое очень взрывчатое соединение состава К 6 С 6 О 6 . Вещество это с отщеплением калия легко переходит в оксид углерода С 6 О 6 ("трихинон"), который можно рассматривать как продукт полимеризации СО. Строение его отвечает шестичленному циклу, образованному атомами углерода, каждый из которых соединён двойной связью с атомами кислорода.

Взаимодействие СО с серой по реакции:

СО + S = COS + 29 кДж

быстро идёт лишь при высоких температурах.

Образующийся тиооксид углерода (О=С=S) представляет собой бесцветный и не имеющий запаха газ (т. пл. -139, т. кип. -50 °С).

Монооксид углерода (II) способен непосредственно соединяться с некоторыми металлами. В результате образуются карбонилы металлов , которые следует рассматривать как комплексные соединения.

Оксид углерода(II) образует комплексные соединения также с некоторыми солями. Одни из них (OsCl 2 ·3CO, PtCl 2 ·CO и т. д.) устойчивы только в растворе. С образованием последнего вещества связано поглощение оксида углерода(II) раствором СuСl в крепкой НСl. Подобные же соединения образуются, по-видимому, и в аммиачном растворе CuCl, часто применяемом для поглощения СО при анализе газов.

Получение.

Монооксид углерода образуется при сгорании углерода в недостатке кислорода. Чаще всего он получается в результате взаимодействия углекислого газа с раскалённым углём:

СО 2 + С + 171 кДж = 2 СО.

Реакция эта обратима, причём равновесие её ниже 400 °С практически нацело смещено влево, а выше 1000 °С - вправо (рис. 7). Однако с заметной скоростью оно устанавливается лишь при высоких температурах. Поэтому в обычных условиях СО вполне устойчив.

Рис. 7. Равновесие СО 2 + С = 2 СО.

Образование СО из элементов идёт по уравнению:

2 С + О 2 = 2 СО + 222 кДж.

Небольшие количества СО удобно получать разложением муравьиной кислоты:

НСООН = Н 2 О + СО

Реакция эта легко протекает при взаимодействии НСООН с горячей крепкой серной кислотой. Практически это получение осуществляют либо действием конц. серной кислоты на жидкую НСООН (при нагревании), либо пропусканием паров последней над гемипентаоксидом фосфора. Взаимодействие НСООН с хлорсульфоновой кислотой по схеме:

НСООН + СISO 3 H = H 2 SO 4 + HCI + CO

идёт уже при обычных температурах.

Удобным методом лабораторного получения СО могут служить нагревание с конц. серной кислотой щавелевой кислоты или железосинеродистого калия. В первом случае реакция протекает по схеме:

Н 2 С 2 О 4 = СО + СО 2 + Н 2 О.

Наряду с СО выделяется и углекислый газ, который может быть задержан пропусканием газовой смеси сквозь раствор гидроксида бария. Во втором случае единственным газообразным продуктом является оксид углерода:

К 4 + 6 H 2 SO 4 + 6 H 2 O = 2 K 2 SO 4 + FeSO 4 + 3 (NH 4) 2 SO 4 + 6 CO.

Большие количества СО могут быть получены путём неполного сжигания каменного угля в специальных печах - газогенераторах. Обычный ("воздушный") генераторный газ содержит в среднем (объёмн. %): СО-25, N2-70, СО 2 -4 и небольшие примеси других газов. При сжигании он даёт 3300-4200 кДж на м 3 . Замена обычного воздуха на кислород ведёт к значительному повышению содержания СО (и увеличению теплотворной способности газа).

Ещё больше СО содержит водяной газ, состоящий (в идеальной случае) из смеси равных объёмов СО и Н 2 и дающий при сгорании 11700 кДж/м 3 . Газ этот получают продувкой водяного пара сквозь слой раскалённого угля, причём около 1000 °С имеет место взаимодействие по уравнению:

Н 2 О + С + 130 кДж = СО + Н 2 .

Реакция образования водяного газа идёт с поглощением тепла, уголь постепенно охлаждается и для поддержания его в раскалённом состоянии приходится пропускание водяного пара чередовать с пропусканием в газогенератор воздуха (или кислорода). В связи с этим водяной газ содержит приблизительно СО-44, Н 2 -45, СО 2 -5 и N 2 -6%. Он широко используется для синтезов различных органических соединений.

Часто получают смешанный газ. Процесс его получения сводится к одновременному продуванию сквозь слой раскалённого угля воздуха и паров воды, т.е. комбинированию обоих описанных выше методов- Поэтому состав смешанного газа является промежуточным между генераторным и водяным. В среднем он содержит: СО-30, Н 2 -15, СО 2 -5 и N 2 -50%. Кубический метр его даёт при сжигании около 5400 кДж.

Применение.

Водяной и смешанный газы (в них содержится CO) используются в качестве топлива и исходного сырья химической промышленности. Они важны, например, как один из источников получения азотно-водородной смеси для синтеза аммиака. При пропускании их совместно с водяным паром над нагретым до 500 °С катализатором (главным образом Fe 2 O 3) происходит взаимодействие по обратимой реакции:

Н 2 О + СО = СО 2 + Н 2 + 42 кДж,

равновесие которой сильно смещено вправо.

Образовавшийся углекислый газ удаляют затем промыванием водой (под давлением), а остаток СО - аммиачным раствором солей меди. В результате остаются почти чистый азот и водород . Соответственно регулируя относительные количества генераторного и водяного газов, можно получать N 2 и Н 2 в требуемом объёмном соотношении. Перед подачей в колонну синтеза газовую смесь подвергают сушке и очистке от отравляющих катализатор примесей.

Молекула CO 2

Молекула СО характеризуется d(СО) = 113 пм, энергия его диссоциации 1070 кДж/моль, что больше, чем у других двухатомных молекул. Рассмотрим электронное строение СО, где атомы связаны между собой двойной ковалентной связью и одной донорно-акцепторной, причём кислород является донором, а углерод акцептором.

Влияние на организм.

Угарный газ очень ядовит. Первыми признаками острого отравления СО являются головная боль и головокружение, в дальнейшем наступает потеря сознания. Предельно допустимая концентрация СО в воздухе промышленных предприятий считается 0,02 мг/л. Основным противоядием при отравлении СО служит свежий воздух. Полезно также кратковременное вдыхание паров нашатырного спирта.

Чрезвычайная ядовитость СО, отсутствие у него цвета и запаха, а также очень слабое поглощение его активированным углём обычного противогаза делают этот газ особенно опасным. Вопрос защиты от него был разрешён изготовлением специальных противогазов, коробка которых заполнялась смесью различных оксидов (в основном MnO 2 и CuO). Действие этой смеси ("гопкалита") сводится к каталитическому ускорению реакции окисления СО до СО 2 кислородом воздуха. На практике гопкалитовые противогазы очень неудобны, так как заставляют дышать нагретым (в результате реакции окисления) воздухом.

Нахождение в природе.

Монооксид углерода входит в состав атмосферы (10-5 объёмн. %). В среднем 0,5% СО содержит табачный дым и 3% - выхлопные газы двигателей внутреннего сгорания.

Оксид углерода(II) – СО

(угарный газ , окись углерода , монооксид углерода )

Физические свойства: бесцветный ядовитый газ без вкуса и запаха, горит голубоватым пламенем, легче воздуха, плохо растворим в воде. Концентрация угарного газа в воздухе 12,5-74 % взрывоопасна.

Строение молекулы:

Формальная степень окисления углерода +2 не отражает строение молекулы СО, в которой помимо двойной связи, обра­зованной обобществлением электронов С и О, имеется дополнительная, образованная по донорно-акцепторному механизму за счет неподеленной пары электронов кислорода (изображена стрелкой):

В связи с этим молекула СО очень прочна и способна вступать в реакции окисления-восстановления только при высоких темпера­турах. При обычных условиях СО не взаимодействует с водой, щелочами или кислотами.

Получение:

Основным антропогенным источником угарного газа CO в настоящее время служат выхлопные газы двигателей внутреннего сгорания. Угарный газ образуется при сгорании топлива в двигателях внутреннего сгорания при недостаточных температурах или плохой настройке системы подачи воздуха (подается недостаточное количество кислорода для окисления угарного газа CO в углекислый газ CO2). В естественных условиях, на поверхности Земли, угарный газ CO образуется при неполном анаэробном разложении органических соединений и при сгорании биомассы, в основном в ходе лесных и степных пожаров.

1) В промышленности (в газогенераторах):

Видео - опыт "Получение угарного газа"

C + O 2 = CO 2 + 402 кДж

CO 2 + C = 2CO – 175 кДж

В газогенераторах иногда через раскалённый уголь продувают водяной пар:

С + Н 2 О = СО + Н 2 – Q ,

смесь СО + Н 2 – называется синтез – газом .

2) В лаборатории - термическим разложением муравьиной или щавелевой кислоты в присутствии H 2 SO 4 (конц.):

HCOOH t˚C, H2SO4 H 2 O + CO­

H 2 C 2 O 4 t˚C,H2SO4 CO­ + CO 2 ­ + H 2 O

Химические свойства:

При обычных условиях CO инертен; при нагревании – восстановитель;

CO - несолеобразующий оксид .

1) с кислородом

2 C +2 O + O 2 t ˚ C →2 C +4 O 2

2) с оксидами металлов CO + Me x O y = CO 2 + Me

C +2 O + CuO t ˚ C →Сu + C +4 O 2

3) с хлором (на свету)

CO + Cl 2 свет → COCl 2 (фосген – ядовитый газ)

4)* реагирует с расплавами щелочей (под давлением)

CO + NaOH P → HCOONa (формиат натрия)

Влияние угарного газа на живые организмы:

Угарный газ опасен, потому что он лишает возможности кровь нести кислород к жизненно важным органам, таким как сердце и мозг. Угарный газ объединяется с гемоглобином, который переносит кислород к клеткам организма, в следствии чего тот становится непригодным для транспортировки кислорода. В зависимости от вдыхаемого количества, угарный газ ухудшает координацию, обостряет сердечно-сосудистые заболевания и вызывает усталость, головную боль, слабость, Влияние угарного газа на здоровье человека зависит от его концентрации и времени воздействия на организм. Концентрация угарного газа в воздухе более 0,1% приводит к смерти в течение одного часа, а концентрация более 1,2% в течении трех минут.

Применение оксида углерода :

Главным образом угарный газ применяют, как горючий газ в смеси с азотом, так называемый генераторный или воздушный газ, или же в смеси с водородом водяной газ. В металлургии для восстановления металлов из их руд. Для получения металлов высокой чистоты при разложении карбонилов.

ЗАКРЕПЛЕНИЕ

№1. Закончите уравнения реакций, составьте электронный баланс для каждой из реакций, укажите процессы окисления и восстановления; окислитель и восстановитель:

CO 2 + C =

C + H 2 O =

С O + O 2 =

CO + Al 2 O 3 =

№2. Вычислите количество энергии, которое необходимо для получения 448 л угарного газа согласно термохимическому уравнению

CO 2 + C = 2CO – 175 кДж

Многие газообразные вещества, существующие в природе и получаемые при производствах, являются сильными отравляющими соединениями. Известно, что хлор использовался как биологическое оружие, пары брома обладают сильно разъедающим действием на кожу, сероводород вызывает отравление и так далее.

Одним из таких веществ является и монооксид углерода или угарный газ, формула которого имеет свои особенности в структуре. О нем и пойдет речь дальше.

Химическая формула угарного газа

Эмпирический вид формулы рассматриваемого соединения следующий: СО. Однако такая форма дает характеристику лишь о качественном и количественном составе, но не затрагивает особенности строения и порядок соединения атомов в молекуле. А он отличается от такового во всех прочих подобных газах.

Именно эта особенность влияет на проявляемые соединением физические и химические свойства. Какая же это структура?

Строение молекулы

Во-первых, по эмпирической формуле видно, что валентность углерода в соединении равна II. Так же, как и у кислорода. Следовательно, каждый из них может сформировать по две формула угарного газа СО это наглядно подтверждает.

Так и происходит. Между атомом углерода и кислорода по механизму обобществления неспаренных электронов происходит образование двойной ковалентной полярной связи. Таким образом, угарного газа принимает вид С=О.

Однако на этом особенности молекулы не заканчиваются. По донорно-акцепторному механизму в молекуле происходит формирование третьей, дативной или семиполярной связи. Чем это объясняется? Так как после образования по обменному порядку у кислорода остается две пары электронов, а у атома углерода - пустая орбиталь, то последний выступает в роли акцептора одной из пар первого. Другими словами, пара электронов кислорода размещается на свободной орбитали углерода и происходит образование связи.

Так, углерод - акцептор, кислород - донор. Поэтому формула угарного газа в химии принимает следующий вид: С≡О. Такая структуризация сообщает молекуле дополнительную химическую стабильность и инертность в проявляемых свойствах при обычных условиях.

Итак, связи в молекуле монооксида углерода:

  • две ковалентные полярные, образованные по обменному механизму за счет обобществления неспаренных электронов;
  • одна дативная, сформированная по донорно-акцепторному взаимодействию между парой электронов и свободной орбиталью;
  • всего связей в молекуле - три.

Физические свойства

Есть ряд характеристик, которыми, как и любое другое соединение, обладает угарный газ. Формула вещества четко дает понять, что кристаллическая решетка молекулярная, состояние при обычных условиях газообразное. Отсюда вытекают следующие физические параметры.

  1. С≡О - угарный газ (формула), плотность - 1,164 кг/м 3 .
  2. Температура кипения и плавления соответственно: 191/205 0 С.
  3. Растворяется в: воде (незначительно), эфире, бензоле, спирте, хлороформе.
  4. Не имеет вкуса и запаха.
  5. Бесцветен.

С биологической точки зрения крайне опасен для всех живых существ, кроме определенных видов бактерий.

Химические свойства

С точки зрения химической активности, одно из самых инертных веществ при обычных условиях - это угарный газ. Формула, в которой отражены все связи в молекуле, подтверждает это. Именно из-за такой прочной структуры данное соединение при стандартных показателях окружающей среды практически не вступает ни в какие взаимодействия.

Однако следует хотя бы немного нагреть систему, как дативная связь в молекуле рушится, как и ковалентные. Тогда монооксид углерода начинает проявлять активные восстановительные свойства, причем достаточно сильные. Так, он способен взаимодействовать с:

  • кислородом;
  • хлором;
  • щелочами (расплавы);
  • с оксидами и солями металлов;
  • с серой;
  • незначительно с водой;
  • с аммиаком;
  • с водородом.

Поэтому, как уже оговаривалось выше, свойства, которые проявляет угарный газ, формула его во многом объясняет.

Нахождение в природе

Основной источник СО в атмосфере Земли - лесные пожары. Ведь главный способ образования данного газа естественным путем - это неполное сгорание различного вида топлива, в основном органической природы.

Антропогенные источники загрязнения воздуха монооксидом углерода так же немаловажны и дают по массовой доле такой же процент, как и природные. К ним относятся:

  • дым от работы фабрик и заводов, металлургических комплексов и прочих промышленных предприятий;
  • выхлопные газы из двигателей внутреннего сгорания.

В природных условиях угарный газ легко окисляется кислородом воздуха и парами воды до углекислого газа. На этом основана первая помощь при отравлении этим соединением.

Получение

Стоит указать одну особенность. Угарный газ (формула), углекислый газ (строение молекулы) соответственно выглядят так: С≡О и О=С=О. Разница на один атом кислорода. Поэтому промышленный способ получения монооксида основан на реакции между диоксидом и углем: СО 2 + С = 2СО. Это самый простой и распространенный способ синтеза данного соединения.

В лаборатории используют различные органические соединения, соли металлов и комплексные вещества, так как выход продукта не ожидают слишком большим.

Качественный реагент на наличие в воздухе или растворе угарного газа - хлорид палладия. При их взаимодействии формируется чистый металл, который вызывает потемнение раствора или поверхности бумаги.

Биологическое действие на организм

Как уже оговаривалось выше, угарный газ - это очень ядовитый бесцветный, опасный и смертоносный вредитель для человеческого организма. Да и не только именно человеческого, а вообще любого живого. Растения, которые находятся под воздействием выхлопных газов автомобилей, гибнут очень быстро.

В чем же именно заключается биологическое воздействие монооксида углерода на внутреннюю среду животных существ? Все дело в формировании прочных комплексных соединений белка крови гемоглобина и рассматриваемого газа. То есть вместо кислорода захватываются молекулы яда. Клеточное дыхание мгновенно блокируется, газообмен становится невозможным в нормальном его течении.

В результате происходит постепенная блокировка всех молекул гемоглобина и, как следствие, смерть. Достаточно поражения всего на 80%, чтобы исход отравления стал летальным. Для этого концентрация угарного газа в воздухе должна составлять 0,1 %.

Первыми признаками, по которым можно определить наступление отравления этим соединением, являются:

  • головная боль;
  • головокружение;
  • потеря сознания.

Первая помощь - выйти на свежий воздух, где угарный газ под влиянием кислорода превратится в углекислый, то есть обезвредится. Случаи смертей от действия рассматриваемого вещества очень часты, особенно в домах с Ведь при сгорании дров, угля и другого вида топлива в качестве побочного продукта обязательно образуется этот газ. Соблюдение правил техники безопасности крайне важно для сохранения жизни и здоровья человека.

Также много случаев отравления в гаражных помещениях, где собрано много работающих двигателей автомобилей, но недостаточно подведен приток свежего воздуха. Смерть при превышении допустимой концентрации наступает уже через час. Ощутить присутствие газа физически невозможно, ведь ни запаха, ни цвета у него нет.

Использование в промышленности

Кроме того, монооксид углерода применяют:

  • для обработки мясных и рыбных продуктов, что позволяет придать им свежий вид;
  • для синтезов некоторых органических соединений;
  • как компонент генераторного газа.

Поэтому это вещество является не только вредоносным и опасным, но еще и весьма полезным для человека и его хозяйственной деятельности.



Загрузка...
Top