Золотое сечение” в изобразительном искусстве. Правило золотого сечения на примере русской живописи и его влияние на современную фотографию Примеры золотого сечения в искусстве

«Золотое сечение» уже давно стало синонимом слова «гармония». Словосочетание «золотое сечение» обладает просто магическим действием. Если вы выполняете какой-то художественный заказ (неважно, картина это, скульптура или дизайн), фраза «работа сделана в полном соответствии с правилами золотого сечения » может стать прекрасным аргументом в вашу пользу – проверить заказчик скорее всего не сможет, а звучит это солидно и убедительно. При этом немногие понимают, что же скрывается под этими словами. Между тем, разобраться, в том, что такое золотое сечение и как оно работает, достаточно просто.

Золотое сечение – это такое деление отрезка на 2 пропорциональные части, при котором целое так относится к большей части, как большая к меньшей . Математически эта формула выглядит так: с : b = b : а или a : b = b : c .

Итогом алгебраического решения данной пропорции будет иррациональное число Ф (Ф в честь древнегреческого скульптора Фидия).

Я не буду приводить само уравнение, чтобы не загружать текст. При желании, его можно легко найти в сети. Скажу только, что Ф будет приблизительно равным 1,618. Запомните эту цифру, это числовое выражение золотого сечения .

Итак, золотое сечение – это правило пропорции, оно показывает соотношение частей и целого.

На любом отрезке можно найти «золотую точку» — точку, которая делит этот отрезок на части, воспринимаемые как гармоничные. Соответственно, так же можно разделить любой объект. Для примера построим прямоугольник, поделенный в соответствии с «золотой» пропорцией:

Отношение большей стороны получившегося прямоугольника к меньшей будет приблизительно равно 1,6 (заметьте, меньший прямоугольник, получившийся в результате построений, также будет золотым).

Вообще, в статьях, объясняющих принцип золотого сечения , встречается множество подобных рисунков. Объясняется это просто: дело в том, что найти «золотую точку» путем обычного измерения проблематично, поскольку число Ф, как мы помним, иррациональное. Зато, такие задачи легко решаются геометрическими методами, с помощью циркуля и линейки.

Однако, наличие циркуля для применения закона на практике совсем не обязательно. Есть ряд чисел, которые принято считать арифметическим выражением золотого сечения. Это ряд Фибоначчи . Вот этот ряд:

0 1 1 2 3 5 8 13 21 34 55 89 144 и т.д.

Запоминать эту последовательность не обязательно, ее можно легко вычислить: каждое число в ряду Фибоначчи равно сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618.

Один из самых древних (и не потерявших свою привлекательность до сих пор) символов, пентаграмма – прекрасная иллюстрация принципа золотого сечения .

В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении (на приведённом рисунке отношение красного отрезка к зелёному, так же как зелёного к синему, так же как синего к фиолетовому, равны). (цитата из Википедии).

Почему же «золотая пропорция» представляется такой гармоничной?

У теории золотого сечения есть масса как сторонников, так и противников. Вообще, идея о том, что красоту можно измерить и просчитать с помощью математической формулы, симпатична далеко не всем. И, возможно, эта концепция действительно казалась бы надуманной математической эстетикой, если бы не многочисленные примеры природного формообразования, соответствующие золотому сечению .


Сам термин «золотое сечение » ввел Леонардо да Винчи. Будучи математиком, да Винчи также искал гармоничное соотношение для пропорций человеческого тела.

“Если мы человеческую фигуру – самое совершенное творение Вселенной – перевяжем поясом и отмерим потом расстояние от пояса до ступней, то эта величина будет относиться к расстоянию от того же пояса до макушки, как весь рост человека к длине от пояса до ступней”.

Деление тела точкой пупа – важнейший показатель золотого сечения . Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела – длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Постепенно, золотое сечение превратилось в академический канон, и когда в искусстве назрел бунт против академизма, про золотое сечение на время забыли. Однако, в середине XIX века эта концепция вновь стала популярной благодаря трудам немецкого исследователя Цейзинга. Он проделал множество измерений (около 2000 человек), и сделал вывод, что золотое сечение выражает средний статистический закон. Помимо людей, Цейзинг исследовал архитектурные сооружения, вазы, растительный и животный мир, стихотворные размеры и музыкальные ритмы. Согласно его теории, золотое сечение является абсолютом, универсальным правилом для любых явлений природы и искусства.

Принцип золотой пропорции применяется в разных сферах, не только в искусстве, но и в науке и в технике. Будучи настолько универсальной, она, конечно, подвергается множеству сомнений. Часто проявления золотого сечения объявляются результатом ошибочных вычислений или простого совпадения, (а то и подтасовки). В любом случае, к любым замечаниям, как сторонников теории, так и противников, стоит относиться критически.

А о том, как этот принцип применять на практике, можно прочитать .

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог “Тимей” посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.В дошедшей до нас античной литературе золотое деление впервые упоминается в “Началах” Евклида. Во 2-й книге “Начал” дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам “Начал” Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась “О перспективе в живописи”. Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли “Божественная пропорция” с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее “божественную суть” как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. “Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать”.

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя “Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности”.

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m, рядом откладываем отрезок M.

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы “вместе с водой выплеснули и ребенка”. Вновь “открыто” золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд “Эстетические исследования”. С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях “математической эстетикой”.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название “Золотое деление как основной морфологический закон в природе и искусстве”. В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.
В конце XIX - начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи
С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3= 5; 3 + 5= 8; 5 + 8= 13, 8 + 13= 21; 13 + 21= 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34= 0,617, а 34: 55= 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...
в начало

Обобщенное золотое сечение
Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления. Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал. Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же “двоичный” ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2= 1 + 1; 4= 2 + 2..., во втором - это сумма двух предыдущих чисел 2= 1 + 1, 3= 2 + 1, 5= 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и “двоичный” ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого - единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через?S (n), то получим общую формулу?S (n)= ?S (n - 1) + ?S (n - S - 1).

Очевидно, что при S= 0 из этой формулы мы получим “двоичный” ряд, при S= 1 - ряд Фибоначчи, при S= 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 - xS - 1= 0.

Нетрудно показать, что при S= 0 получается деление отрезка пополам, а при S = 1 -знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге “Структурная гармония систем” (Минск, “Наука и техника”, 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезу о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики - новой области науки, изучающей процессы в самоорганизующихся системах.С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S> 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят “с головы на ноги” исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были “открыты” числа натуральные; затем их отношения - числа рациональные. И лишь позже - после открытия пифагорейцами несоизмеримых отрезков - на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа - 10, 5, 2, - из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.В такой системе счисления любое натуральное число всегда представимо в виде конечной, - а не бесконечной, как думали ранее! - суммы степеней любой из золотых S-пропорций. Это одна из причин, почему “иррациональная” арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и “Фибоначчиевой” арифметик.

Золотое сечение в искусстве

Под « правилом золотого сечения » в архитектуре и искусстве обычно понимаются асимметричные композиции , не обязательно содержащие золотое сечение математически.

Многие утверждают, что объекты, содержащие в себе « золотое сечение », воспринимаются людьми как наиболее гармоничные . Обычно такие исследования не выдерживают строгой критики. В любом случае ко всем этим утверждениям следует относиться с осторожностью, поскольку во многих случаях это может оказаться результатом подгонки или совпадения. Есть основание считать, что значимость золотого сечения в искусстве преувеличена и основывается на ошибочных расчётах. Некоторые из таких утверждений:

  • Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе , изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению . В фасаде древнегреческого храма также присутствуют золотые пропорции . В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления , и т. д. и т. п.
  • Результаты исследования золотого сечения в музыке впервые изложены в докладе Эмилия Розенова (1903) и позднее развиты в его статье «Закон золотого сечения в поэзии и музыке» (1925). Розенов показал действие данной пропорции в музыкальных формах эпохи Барокко и классицизма на примере произведений Баха , Моцарта , Бетховена .

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино и телевизионных экранов - например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции « слишком вытянутыми ».

Начиная с Леонардо да Винчи , многие художники сознательно использовали пропорции « золотого сечения ». Российский зодчий Жолтовский также использовал золотое сечение в своих проектах.

Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам золотого сечения. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних - в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения . Да и в каждой части есть свой перелом, происходящий по закону золотого сечения . В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета , настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения , он воспринимается как наиболее закономерный и естественный.

Другим примером использования правила «золотого сечения » в киноискусстве служит расположение основных компонентов кадра в особых точках - «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Золотое сечение в скульптуре


Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния.

Известно, что еще в древности основу скульптуры составляла теория пропорций . Отношения частей человеческого тела связывались с формулой золотого сечения .

Пропорции “золотого сечения” создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях.

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении “золотого сечения” . Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям . Великий древнегреческий скульптор Фидий часто использовал “золотое сечение” в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос.

Золотое сечение в архитектуре

В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре , как и в живописи , все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение” , то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению” , то получим те или иные выступы фасада.

Другим примером из архитектуры древности является Пантеон.

Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение” . Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5).

Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.

Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г.

При восстановлении здание приобрело более массивные формы . Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.

Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил:

Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания... К достижению сего служит руководством знание пропорции , перспектива , механика или вообще физика, а всем им общим вождем является рассудок ”.

Золотое сечение в живописи

Каждый рисующий определяет отношения величин и, не удивляйтесь, отличает среди них отношение «золотого - сечения» . Такой характер зрительного восприятия подтверждается многочисленными опытами, проводившимися в разное время в ряде стран мира.

Немецкий психолог Густав Фехнер в 1876 г. провел ряд экспериментов, показывая мужчинам и женщинам, юношам и девушкам, а также детям нарисованные на бумаге фигуры различных прямоугольников, предлагая выбрать из них только один, но производящий на каждого испытуемого самое приятное впечатление. Все выбрали прямоугольник, показывающий отношение двух его сторон в пропорции «золотого сечения» . Опыты иного рода продемонстрировал перед студентами нейрофизиолог из США Уоррен Мак-Каллок в 40-х годах нашего века, когда попросил нескольких добровольцев из числа будущих специалистов привести продолговатый предмет к предпочтительной форме . Студенты некоторое время работали, а затем вернули профессору предметы. Почти на всех из них отметки были нанесены точно в районе отношения «золотого сечения », хотя молодым людям совершенно не было ничего известно об этой « божественной пропорции ». Мак-Каллок потратил два года на подтверждение этого феномена, так как сам лично не верил, что все люди выбирают эту пропорцию или устанавливают ее в любительской работе по изготовлению всевозможных поделок.

Интересное явление наблюдается при посещении зрителями музеев и выставок изобразительного искусства . Многие люди, сами не рисовавшие, с поразительной точностью улавливают даже малейшие неточности в принципа.

Пусть никто, не будучи математиком, не дерзнет читать мои труды ”.


Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в.
Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится “обо всем на свете”.
Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма.
Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках , являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета . Вот одна из них.


Жил-был один бедный человек, было у него четыре сына: три умных, а один из них и так, и сяк. И вот пришла за отцом смерть. Перед тем, как расстаться с жизнью, он позвал к себе детей и сказал: “Сыны мои, скоро я умру. Как только вы схороните меня, заприте хижину и идите на край света добывать себе счастья. Пусть каждый из вас чему-нибудь научится, чтобы мог кормить сам себя”. Отец умер, а сыновья разошлись по свету, договорившись спустя три года вернуться на поляну родной рощи. Пришел первый брат, который научился плотничать, срубил дерево и обтесал его, сделал из него женщину, отошел немного и ждет. Вернулся второй брат, увидел деревянную женщину и, так как он был портной, в одну минуту одел ее: как искусный мастер он сшил для нее красивую шелковую одежду. Третий сын украсил женщину золотом и драгоценными камнями – ведь он был ювелир. Наконец, пришел четвертый брат. Он не умел плотничать и шить, он умел только слушать, что говорит земля, деревья, травы, звери и птицы, знал ход небесных тел и еще умел петь чудесные песни. Он запел песню, от которой заплакали притаившиеся за кустами братья. Песней этой он оживил женщину, она улыбнулась и вздохнула. Братья бросились к ней и каждый кричал одно и то же: “Ты должна быть моей женой”. Но женщина ответила: “Ты меня создал – будь мне отцом. Ты меня одел, а ты украсил – будьте мне братьями.

А ты, что вдохнул в меня душу и научил радоваться жизни, ты один мне нужен на всю жизнь”.


Кончив сказку, Леонардо взглянул на Монну Лизу, ее лицо озарилось светом, глаза сияли. Потом, точно пробудившись от сна, она вздохнула, провела по лицу рукой и без слов пошла на свое место, сложила руки и приняла обычную позу. Но дело было сделано – художник пробудил равнодушную статую ; улыбка блаженства, медленно исчезая с ее лица, осталась в уголках рта и трепетала, придавая лицу изумительное, загадочное и чуть лукавое выражение, как у человека, который узнал тайну и, бережно ее храня, не может сдержать торжество. Леонардо молча работал, боясь упустить этот момент, этот луч солнца, осветивший его скучную модель... портрета . Толковали о естественности выражения, о простоте позы, о красоте рук. Художник сделал еще небывалое: на картине изображен воздух, он окутывает фигуру прозрачной дымкой. Несмотря на успех, Леонардо был мрачен, положение во Флоренции показалось художнику тягостным, он собрался в дорогу. Не помогли ему напоминания о нахлынувших заказах.

Изложены закономерности формообразования в природе и искусстве, зрительного восприятия и композиционного построения изображения. Показана роль золотого сечения. Даны рекомендации по практическому применению золотой пропорции при создании целостной гармонической формы, наиболее полно выражающей содержание произведения живописи и удовлетворяющей потребность человека в прекрасном.

О золотом сечении.

Спор о том, должна или не должна наука вторгаться в заповедные области искусства, идет давно. И спор этот носит явно схоластический характер. Во все эпохи процветания искусство вступало в союз с наукой. Художники-мыслители, теоретики и педагоги, размышлявшие над проблемами обучения молодых, всегда приходили к выводу, что без науки искусство развиваться и процветать не может. Художник и педагог Н. П. Крымов писал: «Говорят: искусство не наука, не математика, что это творчество, настроение и что в искусстве ничего нельзя объяснить - глядите и любуйтесь. По-моему, это не так. Искусство объяснимо и очень логично, о нем нужно и можно знать, оно математично... Можно точно доказать, почему картина хороша и почему плоха» 1 В. И. Суриков утверждал, что в композиции есть какой-то непреложный закон, когда в картине нельзя ничего ни убрать, ни добавить, даже лишнюю точку поставить нельзя, это настоящая математика. Известный французский архитектор и теоретик архитектуры XIX в. Виолле-ле-Дюк считал, что форма, которую невозможно объяснить, никогда не будет красивой. На дверях Сикионской школы рисунка в Древней Греции было написано: «Сюда не допускаются люди, не знающие геометрии». Не следует художникам бояться математики, она вовне и внутри нас. За кажущейся простотой и случайностью живого восприятия окружающей действительности скрывается математика. Когда мы слушаем музыку, наш мозг занимается алгеброй. Когда мы смотрим на что-либо, наш мозг занимается геометрией.

Оглавление
Предисловие
Введение
Глава первая
Золотое сечение и вопросы теории композиции
О золотом сечении
Золотое сечение - гармоническая пропорция
Золотое сечение и симметрия
История золотого сечения
Естественнонаучные основы теории композиции
Принципы формообразования в природе
Закономерности зрительного восприятия
Объективирование световых впечатлении
Научная теория композиции
Определение композиции
Поиски законов композиции
Что такое научная теория композиции
Творчество человека
Законы, правила, приемы и средства композиции
Глава вторая
Практическая композиция
Композиция при работе с натуры
Точка зрения
Расстояние до предмета. Величина образа на сечатке. Передача расстояния до предмета
Картина воображаемая и картина реальная
Способы определения углов зрения при работе с натуры
Приемы механического получения изображения
Приемы композиционных построений
Анализ картины
Композиция натюрморта и интерьера
Композиция пейзажа
О портрете. Натурные постановки
Место художника перед картиной
Цельность изображения
Глава третья
Работа над картиной
Золотое сечение в линейном построении картины
Идея, формат, ритм и золотое сечение
Эскиз картины. Расчеты расстояния и решение «обратной задачи»
Геометрический центр картины и линия золотого сечения. Гармонизация формы
Главный луч зрения в картине
Композиционный алгоритм линейного построения картины
Золотое сечение и композиция евстлотных тонов
Свет и глаз
Общий светлотный тон
Закон трехкомпонентности и принцип сближенных отношений
Композиция светлотных тонов
Золотое сечение и композиция цвета
Общий цветовой тон картины
Ограничение палитры
Цветовые системы и модели
Симметрия цвета. Контраст и нюанс
Гармония цвета
Построение и разработка колорита. Полный композиционный алгоритм картины
Глава четвертая
Научное и интуитивное в творчестве художника
Размер картины
Художественный строй картины
Прекрасное и таинственное
Предмет - зрительный образ - художественный образ
Художники и ученые. Терминология научная и обиходная
Предмет и цвет
Два полюса живописи
Рисовать формой, писать колоритом
Глава пятая
Объяснимое и чувственное в живописи
О колорите
Язык живописи -особый язык искусства
Цвет - единичное, колорит-множественное. Психологическая оценка колорита
От чего зависит колорит
Добрая традиция
Теории живописи - научную основу
Слово об авторе
Памятка живописца
В мире мудрых мыслей
Список использованной и рекомендуемой литературы.


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Золотое сечение в живописи, Ковалев Ф.В., 1989 - fileskachat.com, быстрое и бесплатное скачивание.

  • Художественный труд, 8 класс, Вариант для мальчиков, Чукалин В.Г., Яковлев Р.М., Танбаев X.К., Ермилова Е.В., Велькер Е.Е., Лосенко О.С., 2018

Тибайкина Юлия Витальевна

(Я - исследователь. История открытий)

Тибайкина Юлия Витальевна

Ставропольский край, г. Благодарный

МКОУ «СОШ № 9», 9 класс

Золотое сечение в живописи

Аннотация проекта.

Паспорт проекта.

1. Название: “Золотое сечение в живописи”.

2. Руководитель проекта: Тибайкина Н.А

3. Проект выполняется в рамках предметного элективного курса “Решение задач повышенной сложности по алгебре и геометрии”.

4. Проект затрагивает вопросы истории математики, психологии, философии, социологии.

5. Рассчитан на 14–15 лет, 9–11 класс.

6. Тип проекта: исследовательский и информационный. Внутри классный, краткосрочный.

7. Цель проекта: Изучить значение математики в жизни человека, её влиянии на качества человека, повысить интерес к математике и её изучению. Развить общие учебные навыки.

8. Задачи проекта:

1. Изучить цели математического образования.

2. Познакомиться с основами математического образования.

3. Ответить на вопросы: зачем нужна математика? что может дать математика каждой отдельной личности?

4. Изучить высказывания учёных, политиков, философов о значении математики.

5. Развить навыки самостоятельной работы с текстом, с анкетой, навыков общения, умения анализировать и систематизировать полученные данные.

6. Сформировать приёмы критического мышления, умения проводить оценку и самооценку делать выводы.

9. Предполагаемые продукты проекта: ученический проект «Золотое сечение», создание презентации.

10. Этапы работы:

1. Определение целей работы и путей их достижения, форм и методов работы.

2. Сбор информации по теме.

3. Работа в творческих группах, обработка результатов, промежуточные итоги.

4. Подготовка и проведение круглого стола.

5. Обсуждение результатов, подготовка презентации.

Данный проект иллюстрирует применение математики на практике, знакомит с историческими сведениями, показывает связь с другими областями знаний, подчеркивает эстетические аспекты изучаемых вопросов.

Проект формирует компетентности в сфере самостоятельной деятельности, основанные на усвоении способов приобретения знаний из различных источников информации. В сфере гражданско-общественной деятельности, в сфере социально-трудовой деятельности, в бытовой сфере, в сфере культурно-досуговой деятельности.

Проект расширяет сферу математических знаний учащихся: знакомит учащихся с золотой пропорцией и связанных с нею соотношениях, развивает эстетическое восприятие математических фактов. Показывает применение математики не только в естественных науках, но и в такой области гуманитарной сферы деятельности, как искусство. Помочь осознать степень своего интереса к предмету и оценить возможности овладения им с точки зрения дальнейшей перспективы (показать возможности применения полученных знаний в своей будущей профессии художника, архитектора, биолога, инженера-строителя).

Основополагающий вопрос: «Можно ли измерить алгеброй гармонию?» Проблемные вопросы: что является одним из основополагающих принципов природы? Существует ли закономерность «золотого сечения»? Какое отношение является «золотым сечением»? Чему приближенно равно «золотое сечение»? Удовлетворяют ли приятные глазу вещи «золотому сечению»? Где встречается «золотое сечение»?

« Золотая пропорция» направлен на интеграцию знаний, формирование общекультурной компетентности, создание представлений о математике как науке, возникшей из потребностей человеческой практики и развивающейся из них. В базовом курсе математики золотому сечению уделено мало времени, представлена лишь математическая составляющая, а об общекультурном аспекте упоминается вскользь. Поэтому математика в нем подается как элемент общей культуры человечества, который является теоретической основой искусства, а также элемент общей культуры отдельного человека. При этом курс рассчитан на базовый уровень владения весьма ограниченным математическим содержанием. Ведущий подход, который был использован при разработке курса: показать на обширном материале от античных времен до наших дней пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры – науки и искусства; расширить представления о сферах применения математики; показать, что фундаментальные закономерности математики являются формообразующими в архитектуре, в музыке, живописи и т.д. Данный проект призван помочь ученикам представить математику в контексте культуры и истории. Данный проект может стать дополнительным фактором формирования положительной мотивации в изучении математики, а также понимания учащимися философского постулата о единстве мира и осознания положения об универсальности математических знаний. Предполагается, что результатами освоения учащимися данного курса, могут стать следующие умения:1) использовать математические знания, алгебраический и геометрический материал для описания и решения задач будущей профессиональной деятельности;2) применять приобретенные геометрические представления, алгебраические преобразования для описания и анализа закономерностей, существующих в окружающеммире;3) проводить обобщения и открывать закономерности на основе анализа частных примеров, эксперимента, выдвигать гипотезы и делать необходимые проверки.

Предполагается, что результатами освоения учащимися данного курса, могут стать следующие умения:

1) использовать математические знания, алгебраический и геометрический материал для описания и решения задач будущей профессиональной деятельности;

2) применять приобретенные геометрические представления, алгебраические преобразования для описания и анализа закономерностей, существующих в окружающем мире;

3) проводить обобщения и открывать закономерности на основе анализа частных примеров, эксперимента, выдвигать гипотезы и делать необходимые проверки.

Скачать:

Предварительный просмотр:

Геометрия владеет двумя сокровищами, одно из них – это

теорема Пифагора, а другое – деление отрезка в среднем и

крайнем отношении. Первое можно представить мерой

золота; второе же больно напоминает драгоценный камень.

Иоганн Кеплер

1. Введение.

Актуальность исследования.

При изучении школьных предметов имеется возможность рассмотреть взаимосвязи между понятиями, принятыми в различных областях знаний, и процессами, протекающими в природной среде; выяснить связь между математическими законами и свойствами и закономерностями развития природы. С древности, наблюдая за окружающей природой и создавая произведения искусства, люди искали закономерности, которые позволяли бы определить прекрасное. Но человек не только создавал красивые предметы, не только любовался ими, он все чаще задавался вопросом: почему этот предмет красив, он нравится, а другой, очень похожий, не нравится, его нельзя назвать красивым? Тогда из творца прекрасного он превращался в его исследователя. Уже в Древней Греции изучение сущности красоты, прекрасного сформировалось в отдельную ветвь науки – эстетику. Изучение прекрасного стало частью изучения гармонии природы, ее основных законов организации.

В Большой Советской Энциклопедии дается следующее определение понятия "гармония":

"Гармония - соразмерность частей и целого, слияние различных компонентов объекта в единое органическое целое. В гармонии получают внешнее выявление внутренняя упорядоченность и мера бытия".

Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию называли по-разному – «золотой», «божественной», «золотым сечением», «золотым числом». Классическими проявлениями золотого сечения являются предметы обихода, скульптура и архитектура, математика, музыка и эстетика. В предыдущем столетии с расширением области знаний человечества резко увеличилось количество сфер, где наблюдается феномен золотой пропорции. Это биология и зоология, экономика, психология, кибернетика, теория сложных систем, и даже геология и астрономия.

Огромный интерес у меня и моих сверстников вызвал принцип «золотой пропорции». Интерес к этой древней пропорции то утихает, то разгорается с новой силой. А на самом деле мы встречаемся с золотым сечением каждый день, но не всегда замечаем это. В школьном курсе геометрии мы познакомились с понятием пропорции. Мне захотелось подробнее узнать о применении этого понятия не только в математике, но и в нашей повседневной жизни.

Предмет исследования:

Отображение «Золотого сечения» в аспектах деятельности человека:

1.Геометрия; 2. Живопись; 3. Архитектура; 4. Живая природа (организмы); 5. Музыка и поэзия.

Гипотеза:

Человек в своей деятельности постоянно сталкивается с предметами, использующими в своей основе золотое сечение.

Задачи:

1.Рассмотреть понятие «золотое сечение» (немного об истории), алгебраическое нахождение «золотого сечения», геометрическое построение «золотого сечения».

2.Рассмотреть «золотое сечение» как гармоническую пропорцию.

3.Увидеть в окружающем меня мире применение этих понятий.

Цели :

1.показать на материале от античных времен до наших дней пути взаимодействия и взаимообогащения двух великих сфер человеческой культуры – науки и искусства;

2.расширить представление о сферах применения математики;

3.показать, что фундаментальные закономерности математики являются формообразующими в архитектуре, в музыке, живописи и т.д.

Методы работы:

Сбор и анализ информации.

Самостоятельное исследование (индивидуально и в группе).

Обработка полученной информации и её наглядное представление в виде таблиц и диаграмм.

2.Золотое сечение. Применение золотого сечения в математике.

2.1 Золотая пропорция. Общие сведения.

В математике пропорцией (лат. proportion) называют равенство двух отношений: а:b = с:d.

Рассмотрим отрезок. Его можно разделить точкой на две части бесконечным множеством способов, но только в одном случае получается золотое сечение.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему:

а:b = b:с или с:b = b:а. (рис.1)

Выясним, каким числом выражается золотое сечение. Для этого выберем произвольный отрезок и примем его длину за единицу. (рис.2)

Разобьём этот отрезок на две неравные части. Большую из них обозначим через «х». Тогда меньшая часть равна 1-х.

В пропорции, как известно, произведение крайних членов равно произведению средних и эту пропорцию перепишем в виде: х 2 = (1-х)∙1

Решение задачи сводится к уравнению х 2 +х-1=0 , длина отрезка выражается положительным числом, поэтому из двух корней х 1 = и х 2 = следует выбрать положительный корень.
= 0.6180339.. – число иррациональное.

Следовательно, отношение длины меньшего отрезка к длине большего

отрезка и отношение большего к длине всего отрезка равно 0,62. Такое отно-

шение и будет золотым.

Полученное число обозначается буквой j . Это первая буква в имени великого древнегреческого скульптора Фидия (родился в начале 5 века до н.э.), который часто использовал золотое сечение в своих произведениях. Если ≈ 0,62, то 1-х ≈ 0,38, таким образом, части «золотого сечения» составляют приблизительно 62% и 38% всего отрезка.

2.2. История «Золотого сечения»

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор , древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. В начале 20-го века в Саккаре (Египет) археологи вскрыли склеп, в котором были погребены останки древне-египетского зодчего по имени Хеси-Ра. В литературе это имя часто встречается как Хесира. Предполагается, что Хеси-Ра был современником Имхотепа, жившего в период правления фараона Джосера (27-й век до н.э.), так как в склепе обнаружены печати фараона. Из склепа наряду с различными материальными ценностями были извлечены деревянные доски-панели, покрытые великолепной резьбой. (Рис.5)

В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида . Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Переводчик Дж.Kампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным. В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением, как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи , художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли , и Леонардо оставил свою затею. Лука Пачоли был учеником художника Пьеро дел ла Франчески , написавшего две книги, одна из которых называлась "О перспективе в живописи". Его считают творцом начертательной геометрии. В 1509г. в Венеции была издана книга Луки Пачоли "Божественная пропорция" с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции.

2.4. Золотая пропорция и связанные с нею соотношения.

Вычислим число обратное по отношению к числу φ:

1:()== ∙=

Обратная величина обычно обозначается как Ф = =1,6180339..≈ 1,618.

Число j - единственное положительное число, которое обращается в обратное себе при прибавлении единицы.

Обратим внимание на удивительную инвариантность золотой пропорции:

Ф 2 =() 2 ==== и Ф+1=

Такие значительные преобразования, как возведение в степень, не смогли уничтожить сущность этой уникальной пропорции, ее «душу».

2.4.1. «Золотой» прямоугольник.

Прямоугольник, стороны которого находятся в золотом отношении, т.е.

отношение ширины к длине даёт число φ, называется золотым прямоуголь-

ником.

Окружающие нас предметы дают примеры золотого прямоугольника: об-

ложки многих книг, журналов, тетрадей, открытки, картины, крышки столов,

экраны телевизоров и т.д. близки по размерам к золотому прямоугольнику.

Свойства «Золотого» прямоугольника.

  1. Если от золотого прямоугольника со сторонами а и в (где, а>в ) отрезать квадрат со стороной в , то получится прямоугольник со сторонами в и а-в , который тоже золотой. Продолжая этот процесс, мы каждый раз будем получать прямоугольник меньших размеров, но опять золотой.
  2. Процесс, описанный выше, приводит к последовательности так называемых вращающихся квадратов. Если соединить противоположные вершины этих квадратов плавной линией, то получим кривую, которая называется «золотой спиралью». Точка, с которой она начинает раскручиваться называется полюсом. (Рис.7 и рис.8)

2.4.2. «Золотой треугольник».

Это равнобедренные треугольники у которых отношение длины боковой стороны к длине основания равняется Ф. Одно из замечательных свойств такого треугольника состоит в том, что длины биссектрис углов при его основании равны длине самого основания. (Рис.9)

2.4.3. Пентаграмма.

Замечательный пример «золотого сечения» представляет собой правильный пятиугольник – выпуклый и звездчатый: (рис.10 и рис.11)

Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения. Звездчатый пятиугольник называется пентаграмма (от слова «пенте» – пять).

Правильные многоугольники привлекали внимание древнегреческих учёных ещё задолго да Архимеда. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана, она считалась символом здоровья и служила опознавательным знаком.

4.2. Золотое сечение и восприятие изображений.

О способности зрительного анализатора человека выделять объекты, построенные по алгоритму золотого сечения, как красивые, привлекательные и гармоничные, известно давно. Золотое сечение дает ощущение наиболее совершенного единого целого. Формат многих книг соответствует золотому сечению. Оно выбирается для окон, живописных полотен и конвертов, марок, визиток. Человек может ничего не знать о числе Ф, но в строении предметов, а также в последовательности событий он подсознательно находит элементы золотой пропорции.

1. Участниками исследования стали мои одноклассники, которым предлагалось выбирать и копировать прямоугольники различных пропорций. (Рис.12)

Из набора прямоугольников было предложено выбрать те, которые испытуемые сочтут самыми красивыми по форме. Большинство опрошенных (23%) указали на фигуру, стороны которой соотносятся между собой в пропорции 21:34. Соседние фигуры (1:2 и 2:3) также были оценены высоко соответственно 15 процентов верхняя фигура и 17 процентов – нижняя, фигура 13:23 – 15%. Все остальные прямоугольники получили не более 10 процентов голосов каждый. Этот тест - не только чисто статистический эксперимент, он отражает реально существующую в природе закономерность. (Рис.13 и рис.14)

2.При рисовании собственных рисунков преобладают пропорции, близкие к золотому сечению (3:5), а также в отношении 1:2 и 3:4.

5.Золотое сечение в живописи.

Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости. (Рис.15)

Данное открытие у художников того времени получило название "золотое сечение" картины. Поэтому, для того чтобы привлечь внимание к главному элементу фотографии, картины необходимо совместить этот элемент с одним из зрительных центров.

Ниже, приведены различные варианты сеток, созданных по правилу «Золотого сечения», для различных композиционных вариантов.

Базовые сетки, выглядят как на рис.16.

Мастера Древней Греции, умевшие сознательно пользоваться золотой пропорцией, что, в сущности, весьма просто, умело применяли ее гармонические величины во всех видах искусства и достигли такого совершенства строения форм, выражающих их общественные идеалы, какое редко встречается в практике мирового искусства. Вся античная культура прошла под знаком золотой пропорции. Знали эту пропорцию и в Древнем Египте. Я покажу это на примере таких живописцев как: Рафаэль, Леонардо да Винчи, Шишкин.

ЛЕОНАРДО да ВИНЧИ (1452 – 1519)

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды». Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма. Портрет Монны Лизы (Джоконды) рис.17 долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

“Тайная вечеря” (рис.18)

- самое зрелое и законченное произведение Леонардо. В этой росписи мастер избегает всего того, что могло бы затемнить основной ход изображенного им действия, он добивается редкой убедительности композиционного решения. В центре он помещает фигуру Христа, выделяя ее просветом двери. Апостолов он сознательно отодвигает от Христа, чтобы еще более акцентировать его место в композиции. Наконец, в этих же целях он заставляет сходиться все перспективные линии в точке, непосредственно расположенной над головой Христа. Учеников Леонардо разбивает на четыре симметрические группы, полные жизни и движения. Стол он делает небольшим, а трапезную - строгой и простой. Это дает ему возможность сосредоточить внимание зрителя на фигурах, обладающих огромной пластической силой. Во всех этих приемах сказывается глубокая целеустремленность творческого замысла, в котором все взвешено и учтено..."

РАФАЭЛЬ (1483 – 1520)

В отличие от золотого сечения ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре - спирали. Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, как раз отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру "Избиение младенцев".

На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается...золотая спираль!

«Избиение младенцев» Рафаэль. (Рис.19)

Заключение .

Значение золотого сечения в современной науке очень велико. Эта пропорция используется практически во всех областях знаний. Её пытались изучить многие известные ученные и гении: Аристотель, Геродот, Леонардо Да Винчи, но никому полностью этого сделать не удалось. В данной работе рассмотрены способы нахождения «Золотого сечения», изложены примеры, взятые из областей науки и искусства, в которых отражается эта пропорция: архитектура, музыка, живопись, скульптура, природа. В своей работе я хотела продемонстрировать красоту и широту « Золотого сечения» в реальной жизни. Я поняла, что мир математики приоткрыл мне одну из удивительных тайн, которую я постаралась раскрыть в своей работе, кроме того, эти вопросы выходят за рамки школьного курса, они способствуют совершенствованию и развитию важнейших математических умений. Я собираюсь продолжать свои исследования и дальше, и искать еще более интересные и удивительные факты. Но изучая закон золотого сечения важно помнить, что он не является обязательным во всем, что мы встречаем в природе, а символизирует идеал построения. Небольшие несоответствия идеалу – это то, что делает наш мир таким разнообразным.

Библиография:

  1. Энциклопедия для детей.- «Аванта+».-Математика.-685стр.-Москва.-1998г.
  2. Ю.В. Келдыш. – Музыкальная энциклопедия. – Издательство «Советская энциклопедия». – Москва. – 1974г. – стр.958.
  3. Ковалев Ф.В. Золотое сечение в живописи. К.: Выща школа, 1989.
  4. http://www.sotvoreniye.ru/articles/golden_ratio2.php
  5. http://sapr.mgsu.ru/biblio/arxitekt/zolsech/zolsech2.htm
  6. http://imagemaster.ru/articles/gold_sec.html
  7. Васютинский Н. Золотая пропорция, Москва «Молодая гвардия», 1990 год.
  8. Газета «Математика», приложение к учебно-методическому пособию «Первое сентября».-М.: издательский дом «Первое сентября», 2007.
  9. Депман И.Я. За страницами учебника математики, - М. Просвещение, 1989 Рис. 2

    Рис.4

    Рис. 6. Античный циркуль золотого сечения

    Рисунок 5. Панели Хеси-Ра.

    рис.7 рис.8

    рис.9 рис.10

    рис.11

    Рис.12

    рис.13

    рис.14

    Рис.15

    (рис.16)

    Рис.17

    Рис.18



Загрузка...
Top