Интерференция и дифракция звуковых волн. Волновые свойства света

Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.

Сложение волн, распространяющихся в среде, определяется сложением в разных точках пространства соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается тогда, когда их частоты одинаковы и направле­ния электрических векторов совпадают.

В этом случае для амплитуды напряженности электрического поля:

где Δφ – разность фаз слагаемых волн (колебаний).

В зависимости от типа источников света результат сложения волн может быть принципиально различным.

Рассмотрим сложение волн, идущих от обычных ис­точников света (лампа, пламя, Солнце и т. п.). Каждый такой ис­точник представляет совокупность огромного количества излу­чающих атомов. Отдельный атом излучает электромагнитную волну приблизительно в течение 10 -8 с, причем излучение есть со­бытие случайное, поэтому и разность фаз Δφ при­нимает случайные значения. При этом среднее по излучениям всех атомов значение созΔφ равно нулю. Вместо (1) получаем усредненное равенство для тех точек пространства, где складыва­ются две волны, идущие от двух обычных источников света:

Так как интенсивность волны пропорциональна квадрату амп­литуды,то из (2) имеем условие сложения интенсивностей I1 и I2 волн:

I = I1 + I2 (3)

Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется до­статочно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это на­блюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в от­дельности.

Если Δφ остается неизменной во времени, наблюдается интер­ференция света. Интенсивность результирующей волны принима­ет в разных точках пространства значения от минимального до не­которого максимального.

Интерференция света возникает от согласованных, когерент­ных источников, которые обеспечивают постоянную во времени разность фаз Δφ у слагаемых волн в различных точках. Волны, от­вечающие этому условию, называют когерентными.

Интерференция могла бы быть осуществлена от двух синусо­идальных волн одинаковой частоты, однако на практике создать такие световые волны невозможно, поэтому когерентные волны получают, «расщепляя» световую волну, иду­щую от источника.

Произведение геометрического пути волны на показатель прелом­ления среды, т. е. хn, называют оптической длиной пути , а разность этих путей

δ = х 1 n 1 - х 2 n 2 (4)

- оптической разностью хода волн .

Связь между разностью фаз и оптической разностью хода интерферирующих волн:

Используя законы сложения колебаний и соотно­шение (5), получаем условия максимума и минимума ин­тенсивности света при интерференции - соответственно:

(min) ,

где k = 0, 1, 2, ….

Таким образом, максимум при интерференциинаблюдается в тех точках, для которых оптическая разность хода равна целому числу волн (четному числу полуволн), минимум – в тех точках, для которых оптическая разность хода равна нечетному числу полуволн.

Интерференцию света используют в интерферометрах – приборах для измерения с высокой точностью длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

На рис. 1 изображена принципиальная схема интерферометра Майкелъсона, который относится к группе двухлучевых. так как световая волна в нем раздваивается и обе ее части, прой­дя разный путь, интерферируют.

Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тон­ким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова.

Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины - луч 2". Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично от­ражается, - луч 3". Лучи 2" и 3", попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.

Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую длину путей сделать одинаковой, на пути луча 3 устанавливают прозрачную пластину В, аналогичную А, для компен­сации двух путей, пройденных лучом 2 через пластину А. В этом случае наблюдается максимум интерференции.

Если одно из зеркал сдвинуть на расстояние λ/4, то разность хода лучей станет λ/2, что соответствует минимуму, произойдет смещение интерференционной картины на 0,5 полосы.

Если зеркало от первоначального положения переместить на расстояние

λ /2, то оптическая разность хода интерферирующих лучей изменится на λ , что соответствует максимуму, произойдет смещение интерференци­онной картины на целую полосу. Такая связь между перемещением зер­кала и изменением интерференцион­ной картины позволяет измерять длину волны по перемещению зерка­ла и, наоборот, перемещение по дли­не волны.

Интерферометр Майкельсона применяют для измерения пока­зателя преломления. На пути лучей 2 и 3 устанавливают одинако­вые кюветы К (показаны штриховыми линиями на рис. 1), од­на из которых наполнена веществом с показателем преломления n1, а другая - с n2.

Интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.

Интерференционный рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.

С использованием интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, способствовавших созданию специальной теории относительности.

Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа , используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов (Рис.2).

Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой - вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит, в частности, от соотношения длины волны и разменов неоднородностей. Различают с некоторой степенью услов­ности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.

Объяснение и приближенный расчет дифракции света можно осуществить, используя принцип Гюйгенса - Френеля.

Согласно Гюйгенсу, каждая точка волновой поверхности, ко­торой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 3); S1 и S2 волновые поверхности соответственно в моменты t1 и t 2 .

Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции В таком обобщенном виде эти идеи получили название принципа Гюйгенса - Френеля.

Рассмотрим дифракцию на щели в параллельных лучах (рис. 4).

На узкую длинную щель, расположенную в плоской непроз­рачной преграде МN, нормально падает плоскопараллельный пу­чок монохроматического света. АВ = а - ширина ще­ли; L- собирающая линза, в фокальной плоскости которой рас­положен экран Э для наблюдения дифракционной картины.

Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптиче­ской оси линзы. Дифракция света на щели существенно изменяет явление.

Будем считать, что все лучи пучка света исходят от одного удаленного источника и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозмож­ном направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали к решетке. Линза соберет эти волны в точке О" экрана, где и будет наблюдаться их интерференция. (Положение точ­ки О" получают как пересечение с фокальной плоскостью побочной оси СО" линзы, проведенной под углом α)

Чтобы узнать результат интерференции вторичных волн, прод­елаем следующие построения. Проведем перпендикуляр АD к направлению пучка вторичных волн. Оптические пути всех вторичных волн от АD до О" будут одинаковыми, поскольку линза не вносит добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к

АD , будет сохранена и в точке О".

Разобьем ВD на отрезки, равные λ/2. В случае, показанном на рис.4, получено три таких отрезка: | ВВ 2 | = |В 2 В 1 | = |В 1 D| = λ/2. Проведя из точек В 2 и В 1 прямые, параллельные АО, разделим АВ на равные зоны Френеля: | АА 1 | = |А 1 А 2 | = |А 2 В|. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ/2. Например, вторичная волна, идущая от точки А 2 в выбранном направлении проходит до точки О" расстояние на λ/2 больше, чем волна, идущая от точки А1, и т. д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как отличаются по фазе на π.

Число зон, укладывающихся в щели, зависит от длины волны λ и угла α . Если щель АВ можно разбить при построении на нечетное число зон Френеля, а ВD - на нечетное число отрезков, равных λ/2, то в точке О" наблюдается максимум интенсивности света:

ВD = a sin α = ± (2k + 1)(λ/2); k = 1,2, ... . (7)

Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.

Если щель АВ можно разбить на четное число зон Френеля, наблюдается минимум интенсивности света:

a sin α = ± 2k (λ/2) = ± k λ ; k = 1, 2, ... . (8)

Таким образом, на экране Э получится система светлых (мак­симум) и темных (минимум) полос, центрам которых соответствуют условия (7) и (8), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность I остальных максимумов быстро убывает по мере удале­ния от центрального максимума (рис. 5).

Если щель освещать белым светом, то на экране Э образуется система цветных полос, лишь центральных максимум будет сохранять цвет падающего света, так как при α = 0 усиливается свет всех длин волн.

Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей поступление светового потока, но перераспределителем этого потока в пространстве.

Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей. Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места - щели - будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Суммарную ширину щели а и промежутка b между щелями называют постоянной или периодом дифракционной решетки:

с = а+ b (9)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 6). Выберем некоторое направление вторичных волн под углом α относительно нормали к решет­ке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = А"В". Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие А"В" = ± k λ, или

c sin α = ± k λ (10)

где k=0,1,2, ... - порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (10) является основной формулой дифракционной решетки .

Голография – метод записи и восстановления изображения, основанный на интерференции и дифракции.

При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и таким образом пропадает значительная часть информации о предмете.

Голография позволяет регистрировать и воспроизводить более полную информацию об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную , которая по­является при рассеянии (отражении) части опорной волны пред­метом и содержит соответствующую информацию о нем.

Интерференционную картину, образованную сложением г.гнальной и опорной волн и зафиксированную на светочувст­вительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.

На рис. 7 показана голограмма плоской волны. В этом случае на голограмме фик­сируется плоская сигнальная волна I, попадающая под углом α1 на фотопластинку Ф .

Опорная волна II падает нормально, поэтому во всех точках фото­пластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям макси­мумов и минимумов интерференции, получен­ная голограмма будет состоять из темных и светлых полос.

При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инф­ракрасными и рентгеновскими), можно восстановить видим светом. Так как условия отражения и поглощения электромаг­нитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии (визуальное наблю­дение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости).

Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым све­том. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожидать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.

Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Один из первых способов построения голографического микроскопа основан на том, что изображение предмета получается увеличенным, если голограм­му, записанную с плоской опорной волной, осветить расходящей­ся сферической волной.

В развитие голографии внес вклад советский физик Ю. Н. Денисюк, разработавший метод цветной голографии.

Сейчас трудно оценить все возможности применения гологра­фии: кино, телевидение, запоминающие устройства и т. д. Несом­ненно лишь, что голография является одним из величайших изо­бретений XX в.

Интерференция – это сложение колебаний. В результате интерференции в каких-то точках пространства происходит рост амплитуды колебаний, а в других – их уменьшение. Неизменная картина интерференции наблюдается только тогда, когда разность складываемых колебаний постоянна (они когерентны ). Очевидно, что когерентными могут быть колебания одинаковой частоты. Поэтому чаще всего изучают интерференцию монохроматических колебаний.

Дифракцией -- называют явления, связанные со свойством волн огибать препятствия,т.е отклоняться от прямолинейного распространения.

На рисунке справа показано, как меняют направление звуковые волны после прохождения через отверстие в стене. Согласно принципа Гюйгенса области 1-5 становятся вторичными источниками сферических звуковых волн. Видно, что вторичные источники в областях 1 и 5 приводят к огибанию волнами препятствий.

Вопрос 30.1

Стоячие волны. Уравнение стоячей волны.

Если в среде распространяется несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Волны накладываются друг на друга , не возмущая (не искажая друг друга ). Это и есть принцип суперпозиции волн.

Если две волны, приходящие в какую-либо точку пространства, обладают постоянной разностью фаз, такие волны называются когерентными. При сложении когерентных волн возникаетявление интерференции.

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называетсястоячей волной . Практически стоячие волны возникают при отражении от преград.

Напишем уравнения двух плоских волн, распространяющихся в противоположных направлениях (начальная фаза ):

В выражении для фазы не входит координата, поэтому можно записать:

Точки среды, находящиеся в узлах, колебаний не совершают.

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (рис. 5.5, а ), и узел – если более плотная (рис. 5.5, б ).

Если рассматривать бегущую волну , то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет , т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Вопрос 32

Звуковые волны.

Звуковыми (или акустическими ) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16-20000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с n < 16 Гц (инфразвуковые ) и n > 20 кГц (ультразвуковые ) органами слуха человека не воспринимаются.

Звуковые волны в газах и жидкостях могут быть только продольными, так как эти среды обладают упругостью лишь по отношению к деформациям сжатия (растяжения). В твердых телах звуковые волны могут быть как продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям сжатия (растяжения) и сдвига.

Интенсивностью звука (или силой звука ) называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица интенсивности звука в СИ -ватт на метр в квадрате (Вт/м 2).

Чувствительность человеческого уха различна для разных частот. Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсив­ностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая(порог слышимости) и наибольшая(порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие. На рис. 223 представлены зависимости порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, являетсяобластью слышимости.

Если интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука , зависящая от частоты. Согласно физиологическому закону Вебера - Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:

где I 0 - интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10 –12 Вт/м 2 . Величина L называетсяуровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими, - децибелами (дБ).

Физиологической характеристикой звука является уровень громкости , который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует »90 фон, а шепот на расстоянии 1м - »20 фон.

Реальный звук является наложением гармонических колебаний с большим набором частот, т. е. звук обладает акустическим спектром , который может быть сплошным (в некотором интервале присутствуют колебания всех частот) и линейчатым (присутству­ют колебания отделенных друг от друга определенных частот).

Звук характеризуетсяпомимо громкости еще высотой и тембром.Высота звука - качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т. е. звук становится «выше». Характер акустического спектра и распределения энергии между определен­ными частотами определяет своеобразие звукового ощущения, называемоетембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустичес­кий спектр, т. е. их голоса имеют различный тембр.

Источником звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).

Совершая колебания, тело вызывает колебания прилегающих к нему частиц среды с такой же частотой. Состояние колебательного движения последовательно передается к все более удаленным от тела частицам среды, т. е. в среде распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей от плотности и упругих свойств среды. Скорость распространения звуковых волн в газах вычисляется по формуле

где R - молярная газовая постоянная, М - молярная масса, g=С р /С V - отношение молярных теплоемкостей газа при постоянных давлении и объеме, Т - термодинамическая температура. Из формулы (158.1) вытекает, что скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при T =273 К скорость звука в воздухе (M =29×10 –3 кг/моль)v =331 м/с, в водороде (M =2×10 –3 кг/моль) v =1260 м/с. Выражение (158.1) соответствует опытным данным.

При распространении звука в атмосфере необходимо учитывать целый ряд фак­торов: скорость и направление ветра, влажность воздуха, молекулярную структуру газовой среды, явления преломления и отражения звука на границе двух сред. Кроме того, любая реальная среда обладает вязкостью, поэтому наблюдается затухание звука, т. е. уменьшение его амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание звука обусловлено в значительной мере его поглощением в среде, связанным с необратимым переходом звуковой энергии в другие формы энергии (в основном в тепловую).

Для акустики помещений большое значение имеет реверберация звука - процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Если помещения пустые, то происходит медленное затухание звука и создается «гулкость» помещения. Если звуки затухают быстро (при применении звукопоглоща­ющих материалов), то они воспринимаются приглушенными. Время реверберации - это время, в течение которого интенсивность звука в помещении ослабляется в миллион раз, а его уровень - на 60 дБ. Помещение обладает хорошей акустикой, если время реверберации составляет 0,5-1,5 с.

Вопрос 32.1

Высота звука
Помимо громкости звук характеризуется высотой. Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук. Колебаниям небольшой часто­ты соответствуют низкие звуки, колебаниям большой частоты - высокие звуки.

Так, например, шмель машет своими крылышками с меньшей частотой, чем комар: у шмеля она составляет 220 взмахов в секунду, а у комара - 500-600. Поэтому полет шмеля сопровожда­ется низким звуком (жужжанием), а полет комара - высоким (писком).

Звуковую волну определенной частоты иначе называют музыкальным тоном, поэтому о высоте звука часто говорят как о высоте тона.

Основной тон с примесью нескольких колебаний других частот образует музыкальный звук. Например, звуки скрипки и пианино могут включать до 15-20 различных колебаний. От состава каждого сложного звука зависит его тембр.

Частота свободных колебаний струны зависит от ее размеров и натяжения. Поэтому, натяги­вая струны гитары с помощью колышков и прижимая их к грифу гитары в разных местах, мы меняем их собственную частоту, а следовательно, и высоту издаваемых ими звуков.

Характер восприятия звука во многом зависит от планировки помещения, в котором слушает­ся речь или музыка. Объясняется это тем, что в закрытых помещениях слушатель воспринимает, кроме прямого звука, еще и слитный ряд быстро следующих друг за другом повторений, вызван­ных многократными отражениями звука от находящихся в помещении предметов, стен, потолка и пола.

Вопрос 32.2

Сила звука

Сила звука (относительная) - устаревший термин, описывающий величину, подобную интенсивности звука, но не идентичную ей. Примерно такую же ситуацию мы наблюдаем для силы света (единица - кандела) - величины, подобной силе излучения (единица - ватт на стерадиан).

Сила звука измеряется по относительной шкале от порогового значения, которому соответствует интенсивность звука 1 пВт/м² при частоте синусоидального сигнала 1 кГц извуковом давлении 20 мкПа. Сравните это определение с определением единицы силы света: «кандела равна силе света, испускаемого в заданном направлении монохроматическим источником, при частоте излучения 540 ТГц и силе излучения в этом направлении 1/683 Вт/ср».

В настоящее время термин «сила звука» вытеснен термином «уровень громкости звука»

Под интерференцией света понимают такое сложение световых волн, в результате которого образуется устойчивая картина их усиления и ослабления. Для получения интерференции света необходимо выполнение определенных условий.

Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит от соотношения длины волны и размеров не-однородностей. Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера). Описание дифракционной картины возможно с учетом интерференции вторичных волн.

В главе рассматривается голография как метод, основанный на интерференции и дифракции.

24.1. КОГЕРЕНТНЫЕ ИСТОЧНИКИ СВЕТА. УСЛОВИЯ ДЛЯ НАИБОЛЬШЕГО УСИЛЕНИЯ И ОСЛАБЛЕНИЯ ВОЛН

Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Наиболее простой случай сложения электромагнитных волн наблюдается, когда их частоты одинаковы и направления электрических векторов совпадают. В этом случае амплитуду результирующей волны можно найти по формуле (7.20), которую для напряженности электрического поля запишем в виде:

В зависимости от типа источников света результат сложения волн может быть принципиально различным.

Сначала рассмотрим сложение волн, идущих от обычных источников света (лампа, пламя, Солнце и т.п.). Каждый такой источник представляет совокупность огромного количества излучающих атомов. От-

дельный атом излучает электромагнитную волну приблизительно в течение 10 -8 с, причем излучение есть событие случайное, поэтому и разность фаз Δ φ в формуле (24.1) принимает случайные значения. При этом среднее по излучениям всех атомов значение cos Δ φ равно нулю. Вместо (24.1) получаем усредненное равенство для тех точек пространства, где складываются две волны, идущие от двух обычных источников света:

= + . (24.2)

Так как интенсивность волны пропорциональна квадрату амплитуды, то из (24.2) имеем условие сложения интенсивностей / 1 и / 2 волн:

I = /1+ /2 . (24.3)

Это означает, что для интенсивностей излучений, исходящих от двух (или более) обычных световых источников, выполняется достаточно простое правило сложения: интенсивность суммарного излучения равна сумме интенсивностей слагаемых волн. Это наблюдается в повседневной практике: освещенность от двух ламп равна сумме освещенностей, создаваемых каждой лампой в отдельности.

Если Δ φ остается неизменной, наблюдается интерференция света. Интенсивность результирующей волны принимает в разных точках пространства значения от минимального до некоторого максимального.

Интерференция света возникает от согласованных, когерентных источников, которые обеспечивают постоянную во времени разность фаз Δ φ слагаемых волн в различных точках. Волны, отвечающие этому условию, называют когерентными.

Интерференция могла бы быть осуществлена от двух синусоидальных волн одинаковой частоты, однако практически создать такие световые волны невозможно, поэтому когерентные волны получают, расщепляя световую волну, идущую от источника.

Такой способ применяется в методе Юнга. На пути сферической волны, идущей от источника S, устанавливается непрозрачная преграда с двумя щелями (рис. 24.1). Точки волновой поверхности, дошедшей до преграды, становятся центрами когерентных вторичных волн, поэтому щели можно рассматривать как когерентные источники. На экране Э наблюдается интерференция.

Другой метод заключается в получении мнимого изображения S" источника S (рис. 24.2) с помощью специального однослойного зеркала

(зеркало Ллойда). Источники S и S" являются когерентными. Они создают условия для интерференции волн. На рисунке показаны два интерферирующих луча, попадающие в точку А экрана Э.

Так как время τ излучения отдельного атома ограничено, то разность хода δ лучей 1 и 2 при интерференции не может быть слишком большой, в противном случае в точке А встретятся разные, некогерентные волны. Наибольшее значение δ для интерференции определяется через скорость света и время излучения атома:

δ = с τ = 3 ? 108 . 10-8 = 3 м. (24.4)

Расчет интерференционной картины можно сделать, используя формулу (24.1), если известна разность фаз интерферирующих волн и их амплитуды.

Практический интерес представляют частные случаи: наибольшее усиление волн - максимум интенсивности (max), наибольшее ослабление - минимум интенсивности (min).

Отметим, что условия максимумов и мини-

мумов интенсивностей удобнее выражать не через разность фаз, а через разность хода, так как пути, проходимые когерентными волнами при интерференции, обычно известны. Покажем это на примере интерференции плоских волн I, II, векторы Дкоторых перпендикулярны плоскости чертежа (рис. 24.3).

Колебания вектора И этих волн в некоторой точке В, удаленной на расстояния х 1 и х 2

соответственно от каждого источника, происходят по гармоническому закону Рис. 24.3


24.2. ИНТЕРФЕРЕНЦИЯ СВЕТА В ТОНКИХ ПЛАСТИНКАХ (ПЛЕНКАХ). ПРОСВЕТЛЕНИЕ ОПТИКИ

Образование когерентных волн и интерференции происходит также при попадании света на тонкую прозрачную пластинку или пленку. Пучок света падает на плоскопараллельную пластинку (рис. 24.4). Луч 1 из этого пучка попадает в точку а, частично отражается (луч 2), частично преломляется (луч am). Преломленный луч испытывает отражение на нижней границе пластинки в точке м. Отраженный луч, преломившись в точке в, выходит в первую среду (луч 3). Лучи 2 и 3 образованы от одного луча, поэтому они когерентны и будут интерферировать. Найдем оптическую разность хода лучей 2 и 3. Для этого из точки в проведем нормаль вс к лучам. От прямой вс до встречи лучей их оптическая разность хода не изменится, линза или глаз не внесут дополнительной разности фаз.

До расхождения в точке а эти лучи в совокупности с другими, не показанными на рис. 24.4, формировали луч 1 и поэтому, естественно, имели одинаковую фазу. Луч 3 прошел расстояние \ам\ + |МВ| в пластинке с показателем преломления п, луч 2 - расстояние \АС| в воздухе, поэтому их оптическая разность хода:

Рис. 24.4

1 Для циклических процессов не имеет значения, уменьшается или увеличивается фаза на π, поэтому равноценно было бы говорить не о потере, а о приобретении полволны, однако такая терминология не употребляется.

Из (24.22) видно, что в проходящем свете интерферируют волны с существенно различными амплитудами, поэтому максимумы и минимумы мало отличаются друг от друга и интерференция слабо заметна.

Проанализируем зависимости (24.17) и (24.18). Если на тонкую плоскопараллельную пластинку под некоторым углом падает параллельный пучок монохроматического излучения, то, согласно этим формулам, пластинка в отраженном свете выглядит яркой или темной.

При освещении пластинки белым светом условия максимума и минимума выполняются для отдельных длин волн, пластинка станет окрашенной, причем цвета в отраженном и проходящем свете будут дополнять друг друга до белого.

В реальных условиях падающий пучок не является строго параллельным и не имеет одного определенного угла падения i. Такой небольшой разброс i при значительной толщине пластины l может приводить к существенному различию левых частей в формулах (24.17) и (24.18) и условия максимума и минимума не будут выдержаны для всех лучей пучка света. Это одно из соображений, поясняющих, почему интерференция может наблюдаться лишь в тонких пластинах и пленках.

При падении монохроматического света на пластинку переменной толщины каждому значению l соответствует свое условие интерференции, поэтому пластинка пересечена светлыми и темными линиями (полосами) - линиями равной толщины. Так, в клине это система параллельных линий (рис. 24.6), в воздушном промежутке между линзой и пластинкой - кольца (кольца Ньютона).

При освещении пластинки переменной толщины белым светом получаются разноцветные пятна и линии: окрашенные мыльные пленки,

Рис. 24.6

пленки нефти и масла на поверхности воды, переливчатые цвета крыльев некоторых насекомых и птиц. В этих случаях не обязательна полная прозрачность пленок.

Особый практический интерес имеет интерференция в тонких пленках в связи с созданием устройств, уменьшающих долю световой энергии, отраженной оптическими системами, и увеличива-

ющих, следовательно, энергию, поступающую к регистрирующим системам - фотопластинке, глазу и т.п. С этой целью поверхности оптических систем покрывают тонким слоем оксидов металлов так, чтобы для некоторой средней для данной области спектра длины волны был минимум интерференции в отраженном свете. В результате возрастет доля прошедшего света. Покрытие оптических поверхностей специальными пленками называют просветлением оптики, а сами оптические изделия с такими покрытиями - просветленной оптикой.

Если на стеклянную поверхность нанести ряд специально подобранных слоев, то можно создать отражательный светофильтр, который вследствие интерференции будет пропускать или отражать определенный интервал длин волн.

24.3. ИНТЕРФЕРОМЕТРЫ И ИХ ПРИМЕНЕНИЕ. ПОНЯТИЕ ОБ ИНТЕРФЕРЕНЦИОННОМ МИКРОСКОПЕ

Интерференцию света используют в специальных приборах - интерферометрах - для измерения с высокой степенью точности длин волн, небольших расстояний, показателей преломления веществ и определения качества оптических поверхностей.

На рис. 24.7 изображена принципиальная схема интерферометра Майкельсона, который относится к группе двухлучевых, так как световая волна в нем раздваивается 1 и обе ее части, пройдя разный путь, интерферируют.

Луч 1 монохроматического света от источника S падает под углом 45° на плоскопараллельную стеклянную пластинку А, задняя поверхность которой полупрозрачна, так как покрыта очень тонким слоем серебра. В точке О этот луч расщепляется на два луча 2 и 3, интенсивность которых приблизительно одинакова. Луч 2 доходит до зеркала I, отражается, преломляется в пластине А и частично выходит из пластины - луч 2". Луч 3 из точки О идет к зеркалу II, отражается, возвращается к пластине А, где частично отражается, - луч 3" . Лучи 2" и 3" , попадающие в глаз наблюдателя, когерентны, их интерференция может быть зарегистрирована.

Обычно зеркала I и II располагают так, что лучи 2 и 3 от расхождения до встречи проходят пути одинаковой длины. Чтобы и оптическую

1 Строго говоря, вследствие многократных отражений может образоваться более чем два луча, однако их интенсивности незначительны.

1 Вследствие разных углов падения лучей из S на пластину А или нестрогой перпендикулярности зеркал I и11 интерференционная картина практически всегда представлена полосами (полосы равного наклона или равной толщины соответственно). Этот вопрос подробно не рассматривается.

Как видно, интерференционный рефрактометр (интерферометр, приспособленный для измерения показателя преломления) способен фиксировать изменения показателя преломления в шестом знаке после запятой.

Интерферешщонньгй рефрактометр применяют, в частности, с санитарно-гигиеническими целями для определения содержания вредных газов.

С помощью интерферометра Майкельсон доказал независимость скорости света от движения Земли, что явилось одним из опытных фактов, послуживших созданию специальной теории относительности.

Сочетание двухлучевого интерферометра и микроскопа, получившее название интерференционного микроскопа, используют в биологии для измерения показателя преломления, концентрации сухого вещества и толщины прозрачных микрообъектов.

Принципиальная схема интерференционного микроскопа показана на рис. 24.8. Луч света, как и в интерферометре, в точке А раздваивается, один луч проходит через прозрачный микрообъект М, а другой - вне его. В точке Д лучи соединяются и интерферируют, по результату интерференции судят об измеряемом параметре.

24.4. ПРИНЦИП ГЮЙГЕНСА-ФРЕНЕЛЯ

Расчет и объяснение дифракции света можно приближенно сделать, используя принцип Гюйгенса-Френеля.

Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени (рис. 24.9; S 1 и S 2 - волновые поверхности соответственно в моменты t 1 и t 2 ; t 2 > t 1).

Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции.

В таком обобщенном виде эти идеи получили название принципа Гюйгенса-Френеля.

Для того чтобы определить результат дифракции в некоторой точке пространства, следует рассчитать, согласно принципу Гюйгенса-

Рис. 24.9

Френеля, интерференцию вторичных волн, попавших в эту точку от волновой поверхности. Для волновой поверхности произвольной формы такой расчет достаточно сложен, но в отдельных случаях (сферическая или плоская волновая поверхность, симметричное расположение точки относительно волновой поверхности и непрозрачной преграды) вычисления сравнительно просты. Волновую поверхность при этом разбивают на отдельные участки (зоны Френеля), расположенные определенным образом, что упрощает математические операции.

24.5. ДИФРАКЦИЯ НА ЩЕЛИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ

На узкую длинную щель, расположенную в плоской непрозрачной преграде MN, нормально падает плоскопараллельный пучок монохроматического света (рис. 24.10; \AB | = а - ширина щели; L - собирающая линза, в фокальной плоскости которой расположен экран Э для наблюдения дифракционной картины).

Если бы не было дифракции, то световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление.

Будем считать, что все лучи пучка света исходят от одного удаленного источника 1 и, следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможным направлениям. Изобразить все эти вторичные волны невозможно, поэтому на рис. 24.10 показаны только вторичные волны, распространяющиеся под углом α к направлению падающего пучка и нормали решетки. Линза соберет эти волны в точке О" экрана, где и будет наблюдаться их интерференция. (Положение точки О" получают как пересечение с фокальной плоскостью побочной оси СО "линзы, проведенной под углом α.)

Чтобы узнать результат интерференции вторичных волн, проделаем следующие построения. Проведем перпендикуляр AD к направлению

1 Практически точечный источник можно расположить в фокусе линзы, не показанной на рис. 24.10, Так что от линзы будет распространяться параллельный пучок когерентных волн.

Рис. 24.10

пучка вторичных волн. Пути всех вторичных волн от AD до О" будут тау-тохронными, линза не внесет добавочной разности фаз между ними, поэтому та разность хода, которая образовалась у вторичных волн к AD, будет сохранена и в точке О".

Разобьем BD на отрезки, равные λ /2. В случае, показанном на рис. 24.10, получено три таких отрезка: \ВВ 2 \ = \В 2 В 1 \ = \B 1 D \ = λ /2. Проведя из точек В 2 и В 1 прямые, параллельные AD, разделим АВ на равные зоны Френеля: \ АА 1 \ = | АА 2 | = |А 2 В \. Любой вторичной волне, идущей от какой-либо точки одной зоны Френеля, можно найти в соседних зонах соответствующие вторичные волны такие, что разность хода между ними будет λ /2.

Например, вторичная волна, идущая от точки А 2 в выбранном направлении, проходит до точки О"расстояние на λ /2 больше, чем волна, идущая от точки А 1 , и т.д. Следовательно, вторичные волны, идущие от двух соседних зон Френеля, погасят друг друга, так как различаются по фазе на π.

Число зон, укладывающихся в щели, зависит от длины волны λ и угла α. Если щель АВ разбить при построении на нечетное число зон Френеля, a BD - на нечетное число отрезков, равных λ /2, то в точке О" наблюдается максимум интенсивности света:

Направление, соответствующее углу α = 0, также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.

Если щель АВ разбить на четное число зон Френеля, то наблюдается минимум интенсивности света:

Рис. 24.11

Таким образом, на экране э получится система светлых (максимум) и темных (минимум) полос, центрам которых соответствуют условия (24.26) или (24.27), симметрично расположенных влево и вправо от центральной (α = 0), наиболее яркой, полосы. Интенсивность i остальных максимумов убывает по мере удаления от центрального максимума (рис. 24.11).

Если щель освещать белым светом, то на экране э [см. (24.26), (24.27)] образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как при α = 0 усиливаются все длины волн света.

Дифракция света, как и интерференция, связана с перераспределением энергии электромагнитных волн в пространстве. В этом смысле щель в непрозрачном экране является не просто системой, ограничивающей приложение светового потока, но перераспределителем этого потока в пространстве.

Чтобы понять влияние соотношения между шириной щели и длиной волны на возможность наблюдения дифракционной картины, рассмотрим некоторые частные случаи:

24.6. ДИФРАКЦИОННАЯ РЕШЕТКА. ДИФРАКЦИОННЫЙ СПЕКТР

Дифракционная решетка - оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места - щели - будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а) и ее условное обозначение (б) показаны на

рис. 24.12.

Расстояние между центрами соседних щелей называют постоянной или периодом дифракционной решетки:

где а - ширина щели; b - ширина промежутка между щелями.

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всем возможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 24.13). Выберем некоторое направление вторичных волн под углом α относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода δ = \А"В"\. Такая же разность хода будет для вторичных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие

где k = 0, 1, 2 - порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, α = 0). Равенство (24.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом α от соответственных точек соседних щелей, равна λ/N, т.е.:

где N - число щелей дифракционной решетки. Этой разности хода δ [см. (24.9)] отвечает разность фаз Δφ = 2π /N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2π/Ν, от третьей - 4π/Ν, от четвертой - 6π/Ν и т.д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического (или магнитного) поля, угол между любыми соседними из которых есть 2π/Ν, равна нулю. Это означает, что условие (24.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей δ = 2(λ/Ν) или разности фаз Δφ = 2(2π/Ν) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т.д.

В качестве иллюстрации на рис. 24.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: Е 1 , Е 2 и т.д. - векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т.д. щеле й.

Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а), 120° (б), 180° (в), 240° (г) и 300° (д).

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется Ν - 1 добавочных минимумов, удовлетворяющих условию:

Рис. 24.15

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (24.29)]. В этом случае k указывает порядок спектра.

24.7. ОСНОВЫ РЕНТГЕНОСТРУКТУРНОГО АНАЛИЗА

Основная формула (24.29) дифракционной решетки может быть использована не только для определения длины волны, но и для решения обратной задачи - нахождения постоянной дифракционной решетки по известной длине волны. Такая скромная применительно к обычной дифракционной решетке задача подводит к практически важному вопросу - измерению параметров кристаллической решетки посредством дифракции рентгеновских лучей, что является содержанием рентгено-структурного анализа.

Пусть совмещены две дифракционные решетки, штрихи которых перпендикулярны. Для решеток выполняются условия главных максимумов:

Углы α 1 и α 2 отсчитываются во взаимно перпендикулярных направлениях. В этом случае на экране появится система пятен, каждому из которых соответствует пара значений k 1 и k 2 или α 1 и α 2 . Таким образом, и здесь можно найти с 1 и с 2 по положению дифракционных пятен.

Естественной объемной периодической структурой являются кристаллы, крупные молекулы и т.п. Вторичные волны в кристалле возникают в результате взаимодействия первичных лучей с электронами атомов.

Для отчетливого наблюдения дифракционной картины должно выполняться определенное соотношение между длиной волны и параметром периодической структуры (см. 24.5). Оптимальным условиям соответствует примерно одинаковый порядок этих величин. Учитывая, что расстояние между рассеивающими центрами (атомами) в кристалле (~10 -10 м) приблизительно равно длине волны рентгеновского излуче-

На рис. 24.19 пунктиром показаны две соседние кристаллографические плоскости. Взаимодействие рентгеновского излучения с атомами и возникновение вторич-

ных волн можно рассматривать упрощенным методом как отражение от плоскостей.

Пусть на кристалл под углом скольжения θ падают рентгеновские лучи 1 и 2; 1" и 2" - отраженные (вторичные) лучи, СЕ и CF - перпендикуляры к падающим и отраженным лучам соответственно. Разность хода отраженных лучей 1" и 2":

где l - межплоскостное расстояние.

Максимумы интерференции при отражении возникают в случае, когда разность хода равна целому числу длин волн:

Это формула Вульфа-Брэггов.

При падении монохроматического рентгеновского излучения на кристалл под разными углами наибольшее отражение (максимум) будет для углов, отвечающих условию (24.42). При наблюдении под определенным углом скольжения пучка рентгеновского излучения со сплошным спектром максимум дифракций будет выполняться для длин волн, удовлетворяющих условию Вульфа-Брэггов.

П. Дебаем и П. Шеррером был предложен метод рентгенострук-турного анализа, основанный на дифракции монохроматических рентгеновских лучей в поликристаллических телах (обычно спрессованные порошки). Среди множества кристаллитов всегда найдутся такие, для которых одинаковы /, θ и к, причем эти величины соответствуют формуле Вульфа-Брэггов. Ораженный луч 2 (максимум) составит угол 2 θ с па-

дающим рентгеновским лучом L (рис. 24.20, а). Так как условие (24.42) одинаково для многих кристаллов, по-разному ориентированных, то дифрагированные рентгеновские лучи образуют в пространстве конус, вершина которого лежит в исследуемом объекте, а угол раствора равен 4θ (рис. 24.20, б). Другой совокупности величин l, θ и к, удовлетворяющих условию (24.42), будет соответствовать дру-


гой конус. На фотопленке рентгеновские лучи образуют рентгенограмму (дебаеграмму) в виде окружностей (рис. 24.21) или дуг.

Дифракцию рентгеновских лучей наблюдают также при рассеянии их аморфными твердыми телами, жидкостями и газами. В этом случае на рентгенограмме получаются широкие и размытые кольца.

В настоящее время широко применяют рентгеноструктурный анализ биологических молекул и систем: на рис. 24.22 показаны рентгенограммы белков. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премии (1962). Использование дифракции рентгеновских лучей от кристаллов для исследования их спектрального состава относится к области рентгеновской спектроскопии.

24.8. ПОНЯТИЕ О ГОЛОГРАФИИ И ЕЕ ВОЗМОЖНОМ ПРИМЕНЕНИИ В МЕДИЦИНЕ

Голография 1 - метод записи и восстановления изображения, основанный на интерференции и дифракции волн.

Идея голографии была впервые высказана Д. Габором в 1948 г., однако ее практическое использование оказалось возможно после появления лазеров.

1 Голография (грен.) - метод полной записи.

Изложение голографии уместно начать сравнением с фотографией. При фотографировании на фотопленке фиксируется интенсивность световых волн, отраженных предметом. Изображение в этом случае является совокупностью темных и светлых точек. Фазы рассеиваемых волн не регистрируются, и, таким образом, пропадает значительная часть информации о предмете.

Голография позволяет фиксировать и воспроизводить более полные сведения об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используют как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем.

Интерференционную картину, образованную сложением сигнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной.

Покажем на некоторых примерах, как получается голограмма и восстанавливается изображение.

Голограмма плоской волны

В этом случае на голограмме фиксируется плоская сигнальная волна /, попадающая под углом α 1 на фотопластинку ф (рис. 24.23).

Опорная волна II падает нормально, поэтому во всех точках фотопластинки одновременно ее фаза одинакова. Фазы сигнальной волны вследствие ее наклонного падения различны в разных точках светочувствительного слоя. Из этого следует, что разность фаз между лучами опорной и сигнальной волн зависит от места встречи этих лучей на фотопластинке и, согласно условиям максимумов и минимумов интерференции, полученная голограмма будет состоять из темных и светлых полос.

Пусть ав (рис. 24.23, б) соответствует расстоянию между центрами ближайших темных или светлых интерференционных полос. Это означает, что фазы точек а и в в сигнальной волне отличаются на 2π. Построив нормаль ас к ее лучам (фронт волны), нетрудно видеть, что фазы точек а и с одинаковы. Различие фаз точек в и с на 2π означает, что \ВС\ = λ. Из прямоугольного аавс имеем

Итак, в этом примере голограмма подобна дифракционной решетке, так как на светочувствительной поверхности зарегистрированы области усиленных (максимум) и ослабленных (минимум) колебаний, расстояние ав между которыми определяется по формуле (24.43).

Так как сигнальная волна образуется при отражении части опорной от предмета, то понятно, что в данном случае предметом является плоское зеркало или призма, т.е. такие устройства, которые преобразуют плоскую опорную волну в плоскую сигнальную (технические подробности на рис. 24.23, a не показаны).

Направив на голограмму опорную волну i (рис. 24.24), осуществим дифракцию (см. 24.6). Согласно (24.29), первые главные максимумы (k = 1) соответствуют направлениям

Из (24.46) видно, что направление волны i" (рис. 24.24), дифрагированной под углом a 1 , соответствует сигнальной: так восстанавливают волну, отраженную (рассеянную) предметом. Волна i"" и волны остальных главных максимумов (на рисунке не показаны) также воспроизводят информацию, зафиксированную в голограмме.

Голограмма точки

Одна часть опорной волны II попадает на точечный объект А (рис. 24.25, а) и рассеивается от нее в виде сферической сигнальной волны I, другая часть плоским зеркалом З направляется на фотопластинку Ф, где эти волны интерферируют. Источником излучения является лазер Л. На рис. 24.25, б схематически изображена полученная голограмма.

Хотя в данном примере сигнальная волна является сферической, можно с некоторым приближением применить формулу (24.45) и заметить, что по мере увеличения угла α 1 (см. рис. 24.23, а) уменьшается расстояние АВ между соседними полосами. Нижние дуги на голограмме (рис. 24.25, б) расположены более тесно.

Если вырезать из голограммы узкую полоску, показанную пунктирными линиями на рис. 24.25, б, то она будет подобна узкой дифракционной решетке, постоянная которой уменьшается в направлении оси X. На такой решетке отклонение вторичных волн, соответствующих первому главному максимуму, возрастает по мере увеличения координаты х щели [см. (24.41)]: с становится меньше, | sina| - больше.

Таким образом, при восстановлении изображения плоской опорной волной дифрагированные волны уже не будут плоскими. На рис. 24.26 показаны волна I", формирующая мнимое изображение А" точки А, и волна создающая действительное изображение А".

Так как рассеянные предметом волны попадают совместно с опорной волной во все точки голограммы, то все ее участки содержат информацию о предмете, и для восстановления изображения не обязательно использовать полностью всю голограмму. Следует, однако, заметить,

что восстановленное изображение тем хуже, чем меньшую часть голограммы для этого применяют. Из рис. 24.26 видно, что мнимое и действительное изображения образуются и в том случае, если восстановление осуществляют, например, нижней половиной голограммы (штриховые линии), однако изображение при этом формируется меньшим количеством лучей.

Любой предмет является совокупностью точек, поэтому рассуждения, приведенные для одной точки, могут быть обобщены и на голографию любого предмета. Голографические изображения объемны, и их зрительное восприятие ничем не отличается от восприятия соответствующих предметов 1: ясное видение разных точек изображения осуществляется посредством адаптации глаза (см. 26.4); при изменении точки зрения изменяется перспектива, одни детали изображения могут заслонять другие.

При восстановлении изображения можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и рентгеновскими), можно восстановить видимым светом. Так как условия отражения и поглощения электромагнитных волн телами зависят, в частности, от длины волны, то эта особенность голографии позволяет использовать ее как метод внутривидения, или интроскопии 2 .

Особо интересные и важные перспективы открываются в связи с ультразвуковой голографией. Получив голограмму в ультразвуковых механических волнах, можно восстановить ее видимым светом. Ультразвуковая голография в перспективе может быть использована в медицине для рассматривания внутренних органов человека с диагностической целью, определения пола внутриутробного ребенка и т.д. Учитывая большую информативность этого метода и существенно меньший вред ультразвука по сравнению с рентгеновским излучением, можно ожи-

1 Некоторое отличие обусловлено одноцветностью изображения, которое неизбежно при записи и восстановлении монохроматической волной.

2 Intro (лат.) - внутри и skopeo (лат.) - смотрю. Визуальное наблюдение объектов, явлений и процессов в оптически непрозрачных телах и средах, а также в условиях плохой видимости.

дать, что в будущем ультразвуковая голографическая интроскопия заменит традиционную рентгенодиагностику.

Еще одно медико-биологическое приложение голографии связано с голографическим микроскопом. Его устройство основано на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.

В развитие голографии внес вклад советский физик, лауреат Ленинской премии Ю.Н. Денисюк, разработавший метод цветной голографии.

ОПРЕДЕЛЕНИЕ

Интерференцией называют изменение средней плотности потока энергии, которое вызвано суперпозицией волн.

Или немного иначе: Интерференцией называют сложение в пространстве волн, при этом возникает неизменное во времени амплитудное распределение суммарных колебаний.

Интерференцией волн света называют сложение волн, при котором можно наблюдать устойчивую во времени картину усиления или ослабления суммарных колебаний света в разных пространственных точках. Термин интерференция в науку ввел Т. Юнг.

Условия возникновения интерференции

Для того чтобы при наложении волн образовывалась устойчивая интерференционная картина необходимо, чтобы источники волн обладали одинаковой частотой и постоянной разностью фаз. Подобные источники называют когерентными (согласованными). Когерентными называют волны, которые созданы когерентными источниками.

Так, исключительно при наложении когерентных волн возникает устойчивая интерференционная картина.

В оптике для создания интерференционной картины когерентные волны получают:

  1. делением амплитуды волны;
  2. делением фронта волны.

Условие минимумов интерференции

Амплитуда колебаний интерферирующих волн в рассматриваемой точке будет минимальной, если разность хода () волн в этой точке содержит нечетное число длин полуволн ():

Допустим, что на отрезке укладывается , тогда получается, одна волна отстает от другой на половину периода. Разность фаз этих волн оказывается равна , что означает - колебания происходят в противофазе. При сложении таких колебаний, амплитуда суммарной волны получится равной нулю.

Условие максимумов интерференции

Амплитуда колебаний интерферирующих волн в рассматриваемой точке будет максимальной, если разность хода () волн в этой точке содержит целое число длин волн ():

Определение дифракции

ОПРЕДЕЛЕНИЕ

Отклонение волн от распространения по прямой, огибание волной препятствий, называют дифракцией .

Слово дифракция с латинского языка означает разломанный.

Явление дифракции объясняют при помощи принципа Гюйгенса. Вторичные волны, которые испускаются участками вещества (среды), попадают за края препятствия, которое находится на пути движения волны. Согласно теории Френеля поверхность волны в любой произвольный момент времени - это не только огибающая вторичных волн, а результат их интерференции.

Условия, при которых наблюдается дифракция

Особенно явно дифракция проявляется тогда, когда размеры препятствия меньше или сравнимы с длиной волны.

Дифрагировать могут волны любой природы, как и интерферировать.

Условие минимумов интенсивности

При дифракции световой волны на одной щели при нормальном падении лучей условие минимума интенсивности записывается как:

где a - ширина щели; - угол дифракции; k - номер минимума; - длина волны.

Условие максимумов интенсивности

При дифракции световой волны на одной щели при нормальном падении лучей условие максимума интенсивности записывается как:

где - приближенная величина угла дифракции.

Условие главных максимумов интенсивности при дифракции на дифракционной решетке

Условие главных максимумов интенсивности дифракция света на дифракционной решетке при нормальном падении лучей записывают:

где d - период (постоянная) решетки; k - номер главного максимума; - угол между нормалью к плоскости решетки и направлением дифрагированных волн.

Значение дифракции

Дифракция не дает возможности получать четкие изображения мелких предметов, так как не всегда можно считать, что свет распространяется строго по прямой. Вследствие этого, изображения могут быть размытыми, при этом увеличение не помогает увидеть детали предмета, если его размер сравним с длиной волны света. Явление дифракции накладывает границы на применимость законов геометрической оптики и определяет предел разрешающей способности оптических приборов.

Примеры решения задач

ПРИМЕР 1

Задание Почему нельзя наблюдать явление интерференции при помощи двух электрических лампочек?
Решение Если включить одну электрическую лампу, потом добавить к ней еще, то увеличится освещенность, но не будет ни каких чередований темных и светлых полос (минимумов и максимумов освещенности). Это происходит потому, что волны света, которые испускаются лампами, являются не когерентными (несогласованными). Для того чтобы получать устойчивую во времени интерференционную картину световые волны должны иметь одинаковые частоты (длины волн) и постоянную во времени разность фаз. Атомы источников света, например, ламп испускают волны независимо друг от друга отдельными цугами. Цуги разных источников накладываются друг на друга. Амплитуда колебаний в произвольной точке пространства меняется во времени хаотически, в зависимости от разности фаз цугов волн. Устойчивого распределения максимумов и минимумов увидеть нельзя.

ПРИМЕР 2

Задание На дифракционную решетку перпендикулярно ее поверхности падает монохроматический пучок света с длиной волны м. число штрихов на миллиметр решетки равно 500. Каков наибольший порядок спектра?
Решение Сделаем рисунок.

Разглядывая сияющее голографическое изображение, большинство из нас вряд ли вспоминает физические термины «дифракция» и «интерференция световых волн» .


Но именно благодаря изучению этих понятий появилась возможность создавать голограммы.

Что такое дифракция света?

Слово «дифракция» образовано от латинского «diffractus» , что означает в дословном переводе «огибание волнами препятствия» . Как известно, имеет волновую природу, и его лучи подчиняются волновым законам. Дифракцией в физике называют оптические явления, возникающие, когда световые волны распространяются в оптически неоднородной среде с непрозрачными включениями.

Волновая природа света определяет его поведение при огибании препятствий. Если препятствие во много раз больше длины световой волны, свет не огибает его, образуя зону тени. Но в случаях, когда размеры препятствий соразмерны с длиной волны, возникает явление дифракции. В принципе, любое отклонение от геометрических оптических законов можно отнести к дифракции.

Интерференция волн

Если мы установим перед источником света непрозрачный экран и проделаем в нём точечное отверстие, то проникающие через эту точку лучи света на следующем экране, расположенном параллельно первому, отобразятся в виде концентрических колец с чередованием светлых и тёмных окружностей. Это явление в физике называют дифракцией Френеля, по имени учёного, который впервые обнаружил его и описал.

Изменив форму отверстия и сделав его щелеобразным, мы получим на втором экране другую картину. Световые лучи расположатся в виде ряда светлых и тёмных полосок, как на магазинном штрих-коде. Дифракцию света на щелеобразном отверстии впервые описал немецкий физик Фраунгофер, именем которого она называется до сих пор.


Объяснить разложение световой волны на светлые и тёмные участки учёные смогли при помощи понятия интерференции. Несколько источников волновых колебаний, если частоты их колебаний когерентны (одинаковы либо кратны друг другу), могут усиливать излучение друг друга, но могут и ослаблять, в зависимости от совпадения фаз колебаний. При огибании препятствий и возникновении вторичных волн вступает в действие их интерференция. На участках, где фазы волн совпадают, наблюдается повышенная освещённость (яркие светлые полоски либо окружности), а там, где не совпадают – освещённость снижена (тёмные участки).

Дифракционная решётка

Если взять прозрачную пластинку и нанести на неё ряд параллельных непрозрачных чёрточек на одинаковом расстоянии друг от друга, то мы получим дифракционную решётку. При пропускании через неё плоского светового фронта образуется дифракция на непрозрачных штрихах. Вторичные волны, взаимно ослабляясь и усиливаясь, образуют дифракционные минимумы и максимумы, что легко обнаружить на экране, поставленном за решёткой.

При этом происходит не только отклонение световых лучей, но и разложение белого света на цветовые спектральные составляющие. В природе нужная для маскировки окраска крыльев бабочек, оперения птиц, змеиной чешуи часто образуется благодаря использованию дифракционных и интерференционных оптических явлений, а не из-за пигментов.

Голограммы

Принцип голограммы был изобретён в 1947 году физиком Д. Габором, который впоследствии получил за его изобретение Нобелевскую премию. Трёхмерное, т.е. объёмное изображение объекта можно снять и записать, а затем воспроизвести, если использовать лазерные лучи. Одна из световых волн называется опорной и испускается источником, а вторая – объектной и отражается от записываемого объекта.

На фотопластинке либо другом материале, предназначенном для записи, фиксируется сочетание светлых и тёмных полос и пятен, которые отображают интерференцию электромагнитных волн в этой зоне пространства. Если на фотопластинку направляют свет с длиной волны, соответствующей характеристикам опорной волны, то происходит его преобразование в световую волну, по характеристикам близкую к объектной. Таким образом, в световом потоке получается объёмное изображение зафиксированного объекта.


Сегодня неподвижные голограммы можно записывать и воспроизводить даже в домашних условиях. Для этого нужен лазерный луч, фотопластина и каркас, который надёжно удерживает в неподвижности эти приспособления, а также объект записи. Для домашней голограммы отлично подойдёт луч лазерной указки со снятой фокусирующей линзой.



Загрузка...
Top